DOI QR코드

DOI QR Code

All-optical mach-zehnder interferometric wavelength converter monolithically integrated with loss-coupled DFB probe source

Loss-Coupled DEB LD집적 Mach-Zehnder 간섭계형 파장 변환기

  • 김현수 (한국전자통신연구원 광통신소자연구부) ;
  • 김종회 (한국전자통신연구원 광통신소자연구부) ;
  • 심은덕 (한국전자통신연구원 광통신소자연구부) ;
  • 백용순 (한국전자통신연구원 광통신소자연구부) ;
  • 김강호 (한국전자통신연구원 광통신소자연구부) ;
  • 권오기 (한국전자통신연구원 광통신소자연구부) ;
  • 오광룡 (한국전자통신연구원 광통신소자연구부)
  • Published : 2003.08.01

Abstract

We report the first demonstration of 10 Gb/s wavelength conversion in a Mach-Zehnder interferometric wavelength converter monolithically integrated with a loss-coupled DFB probe source. The integrated device is fabricated using a BRS (buried ridge stripe) structure with an undoped InP clad layer on the top of a passive waveguide to reduce high propagation loss. The device exhibited a static extinction ratio of 11 dB. Good performance at 10 Gb/s is obtained with an extinction ratio of 7 dB and a power penalty of 2.8 dB at a 10$^{-9}$ bit error rate.

단일 모드 광원이 집적된 Mach-Zehnder간섭계형 파장 변환기를 제작하여 세계 최초로 10 Gb/s에서 파장 변환 특성을 확인하였다. 제작된 파장 변환기는 수동 도파로 영역에서의 전파 손실을 줄이기 위해 undoped InP층이 수동 도파로 위에 형성된 새로운 BRS 구조를 사용하였다. 단일 모드 광원으로 손실 결합형 분포 궤환형 반도체 레이저(loss-coupled distributed feedback laser; LC-DFB LD)를 사용하여, 파장 변환기에 있는 반도체 광증폭기의 주입전류가 200 mA까지 측모드 억제율이 30 dB 이상의 값을 나타내었다. 제작된 LC-DFB LD 집적 파장 변환기는 10 Gb/s의 동적 파장 변환 특성 측정 결과, 7 dB 정도의 소광비를 갖는 eye 패턴을 얻을 수 있었으며, power penalty는 $10^{-9}$ bit error rate에서 2.8 dB의 값을 나타내었다.

Keywords

References

  1. J. Lightwave Tech. v.14 no.6 Wavelength conversion technologies for WDM network applications S.J.B.Yoo https://doi.org/10.1109/50.511595
  2. J. Lightwave Tech v.14 no.6 All-optical wavelength conversion by semiconductor optical amplifiers T.Durhuus;B.Mikkelsen;C.Joergensen;S.L.Danielsen;K.E.Stubkjaer https://doi.org/10.1109/50.511594
  3. IEEE Photon Tech. Lett. v.8 no.9 10 Gb/s wavelength conversion with integrated multiquantum-well-based 3-Port Mach-Zehnder interferometer W.Idler;K.Daub;G.Laube;M.Schilling;P.Wiedemann;K.Dutting;M.Klenk;E.Lach;Wunstel https://doi.org/10.1109/68.531823
  4. IEEE Photon. Tech. Lett. v.10 no.1 All optical wavelength conversion schemes for increased input power dynamic range S.L.Danielsen;P.B.Hansen;K.E.Stubkjaer;M.Schilling;K.Wunstel;W.Idler;P.Doussiere;F.Pommerau https://doi.org/10.1109/68.651104
  5. IEEE Photon. Tech. Lett v.9 no.10 All-optical Mach-Zehnder wavelength converter with monolithically integrated DFB probe source L.H.Spiekman;U.Koren;M.D.Chien;B.I.Muller;J.M.Wiesenfeld;J.S.Perino https://doi.org/10.1109/68.623259
  6. H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, and H. Imai, “Stability in single longitudinal mode operation in GaInAsP/InP phase adjusted DFB lasers,” IEEE J. Quantum Electron., vol. QE-23, no. 6, pp. 804-814, 1987. https://doi.org/10.1109/JQE.1987.1073454
  7. IEEE. J. Quantum Electron. v.QE­23 no.6 Stability in single longitudinal mode operation in GaInAsP/InP phase adjusted DFB lasers H.Soda;Y.Kotaki;H.Sudo;H.Ishikawa;S.Yamakoshi;H.Imai
  8. IEEE J. Quantum Electron v.QE­27 no.6 Gain-coupled DFB lasers versus Index-coupled and phase-shifted DFB lasers: a comparison based on spatial hole burning corrected yield K.David;G.Morthier;P.Vankwikelberge;R.G.Baets;T.wolf;B.Borchert
  9. J. Korean Phys. Soc. v.34 Fabrication and characterization of complex-coupled MQW­DFB Laser with an InGaAs absorptive grating D.K.Oh;M.G.Kim;H.S.Kim;N.Hwang;H.T.Lee;K.E.Pyun;C.D.Park https://doi.org/10.1049/el:19910563
  10. Electron. Lett. v.27 no.11 Polarisation insensitive 1.55 ㎛ semiconductor integrated optical amplifier with access waveguide grown by LP-MOCVD G.Glastre;D.Rondi;A.Enard;R.Blondeau https://doi.org/10.1049/el:19910563
  11. Mat. Sci. and Eng. v.B44 Evaluation of the properties of hydrogenated InP/InGaAsP double heterostructure waveguides E.V.K.Rao;M.Allovon;Y.Rafle;M.Juhel;H.Thibierge;B.Theys;J.Chevallier https://doi.org/10.1049/el:19880148
  12. Electron. Lett. v.24 no.4 Electro-optical modulators using novel buried waveguides in GaInAsP/InP material Y.Bourbin;A.Enard;R.Blondeau;M.Razeghi;D.Rondi;M.Papuchon;B.D.Cremoux https://doi.org/10.1049/el:19880148
  13. J. Lightwave Tech v.4 no.11 Regimes of feedback effects in 1.5­(m distributed feedback lasers R.W.Trach;A.R.Chraplyvy https://doi.org/10.1109/68.414680
  14. IEEE Photon. Tech. Lett. v.7 no.9 Dynamic operation of a three-port, integrated Mach-Zehnder wavelength converter X.Pan;J.M.Wiesenfeld;J.S.Perino;T.L.Koch;G.Raybon;U.Koren;M.Chien;M.Young;B.I.Miller;C.A.Burrus https://doi.org/10.1109/68.414680