• 제목/요약/키워드: Static power

검색결과 1,526건 처리시간 0.021초

Custom Power의 전력품질 향상을 위한 PWM Cuk AC-AC 컨버터의 정적 특성 해석 (Static Characteristics Analysis of PWM Cuk AC-AC Converter for Power Quality Improvement of Custom Power)

  • 최남섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.513-516
    • /
    • 2004
  • 본 논문에서는 Custom Power의 전력품질 향상을 위한 PWM Cuk AC-AC 컨버터를 제안한다. AC line Conditioner, 위상천이기와 같은 고정주파수 가변전압(WCF:Variable Voltage Constant Frequency)응용에 사용되는 PWM Cuk AC-AC 컨버터를 모델링함에 있어서 복소 회로 DQ 변환을 사용하여 전압이득, 역률과 같은 정적인 특성에 대한 해석적인 식을 구한다. 끝으로, PSIM 시뮬레이션을 통하여 해석과 모델링의 타당성을 보일 것이다.

  • PDF

EFFECT OF MISALIGNMENT ON THE STATIC CHARACTERISTICS OF 3-LOBE proceeding BEARING

  • Strzelecki, S.;Radulski, W.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.95-96
    • /
    • 2002
  • The operation of proceeding bearing in the conditions of misaligned axis of proceeding and bush leads to the load concentration on the bearing edges causing further mixed lubrication conditions, unstable operation and intensive wear of mating parts. For the design process of proceeding bearing the knowledge of static characteristics determined from the oil film pressure and temperature distribution is very important. For the 3-lobe proceeding bearing, the pressure, temperature and viscosity fields, load capacity, minimum oil film thickness, power loss, oil flow and maximum oil film temperature have been determined by iterative solution of the Reynolds', energy and viscosity equations. The paper introduces the results of theoretical investigations of static characteristics of 3-lobe proceeding bearing operating at misaligned axis of proceeding and bush. An effect of misalignment ratio, length to diameter ratio of the proceeding bearing, the lobe clearance ratio on the static characteristics was investigated. Laminar, adiabatic model of oil film for the solution of Reynolds, energy and viscosity equations was applied.

  • PDF

Static Synchronous Series Compensator(SSSC) 댐핑 제어 및 해석모형 (Damping Control Strategy and Analysis Model of Static Synchronous Series Compensator(SSSC))

  • 김학만;전영환;오태규
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권10호
    • /
    • pp.509-515
    • /
    • 2000
  • This paper addresses a damping control strategy of Static Synchronous Series Compensator(SSSC) and analysis model for stability study. The effect of injected voltage source generated by SSSC is modelled as equivalent load. This model is thought to be reasonable for the stability study because the dynamics of SSSC is very fast compared with that of power system. Damping controller of SSSC is based on Transient Energy Function method. The proposed control strategy is insensitive to the operating conditions like power flow level because control law depends on the phase angles. The proposed analysis model and control strategy was confirmed by WSCC 9 bus system and two area system. Especially, the robustness of proposed control strategy is demonstrated with respect to multiple operating conditions in two area system.

  • PDF

1,700 V급 Static Induction Thyristor 소자 최적화 (Optimization of 1,700 V Static Induction Thyristor Devices)

  • 문경숙;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제30권7호
    • /
    • pp.423-426
    • /
    • 2017
  • The designing approaches with consideration offabrication process technologies for high-frequency, high-powered, silicon-based static induction thyristors (SITH) are presented. The effects of doping concentration and thickness on the I-V characteristics and power performance of the devices are discussed. The dependence of SITH switching performances on material, geometric structure, and technological parameters isexamined by using two-dimensional simulations. Thick-epitaxy technology is found to be one of the most critical steps in realizing the proposed structure and switching times, $t_{off}$, of SITH, which may be reduced to below ${\sim}0.26{\mu}s$ for the proposed 1,700 V SITH devicesafter optimization.

Optimal Placement for FACTS to Improve Static Voltage Stability

  • Gu, Min-Yan;Baek, Young-Sik
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권3호
    • /
    • pp.141-145
    • /
    • 2004
  • FACTS devices, such as the Thyristor Controlled Series Compensator (TCSC) and Static Var Compensators (SVC), can help increase system load margin to improve static voltage stability. In power systems, because of the high cost and the effect value, the optimal placement for FACTS devices must be determined. This paper investigates the use of the series device (SVC) and the parallel device (TCSC) from the point of load margin to increase voltage stability. It considers the sensitivity of load margin to the line reactance and eigenvector of the collapse. The study has been carried out on the IEEE 14 Bus Test System to verify the validity and efficiency of the method. It reveals that incorporation of FACTS devices significantly enhance load margin as well as system stability.

Dynamic Characteristic Analysis of SSSC Based on Multi-bridge PAM Inverter

  • Han Byung-Moon;Kim Hee-Joong;Baek Seung-Taek
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.539-545
    • /
    • 2001
  • This paper proposes a static synchronous series compensator based on multi-bridge inverter. The proposed system consists of 6 H-bridge modules per phase, which generate 13 pulses for each half period of power frequency. The dynamic characteristic was analyzed by simulations with EMTP code, assuming that it is inserted in the 154-kV transmission line of one-machine-infinite-bus power system. The feasibility of hardware implementation was verified through experimental works using a scaled model. The proposed system does not require a coupling transformer for voltage injection, and has flexibility in expanding the operation voltage by increasing the number of H-bridge modules.

  • PDF

AC and DC Applications of Induction Generator Excited by Static VAR Compensator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제4권3호
    • /
    • pp.169-179
    • /
    • 2004
  • This paper presents the steady-state analysis of the three-phase self-excited induction generator (SEIG). The three-phase SEIG with a squirrel cage rotor is driven by a variable-speed prime mover (VSPM) or a constant-speed prime mover (CSPM) such as a wind turbine or a micro gas turbine. Furthermore, a PI closed-loop feedback voltage regulation scheme of the three-phase SEIG driven by a VSPM on the basis of the static VAR compensator (SVC) is designed and evaluated for the stand-alone AC and DC power applications. The simulation and experimental results prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in terms of its fast responses and high performances

대규모와 모사에 의한 3차원 소형축류홴의 운전부하에 따른 난류유동장 구조에 대한 연구 (A Study on the Structure of Turbulent Flow Fields According to the Operating Loads of Three-Dimensional Small-Size Axial Fan by Large Eddy Simulation)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제19권5호
    • /
    • pp.80-85
    • /
    • 2015
  • The unsteady-state, incompressible and three-dimensional large eddy simulation(LES) was carried out to analyze the structure of turbulent flow fields according to the operating loads of three-dimensional small-size axial fan(SSAF). LES shows the best prediction performance in comparison with any other Reynolds averaged Navier-Stokes(RANS) method because static pressure coefficients analysed by LES show a little bit larger than measurements including all flow coefficients. Also, it can be known that the wake of SSAF is divided into from axial flow to radial flow before and behind stall region according to the increase of static pressure through LES analysis.

Static VAR Compensator-based Feedback Control Implementation for Self-Excited Induction Generator Terminal Voltage Regulation Driven by Variable-Speed Prime Mover

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제4권2호
    • /
    • pp.65-76
    • /
    • 2004
  • In this paper, the steady-state analysis of the three-phase self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) such as a wind turbine is presented. The steady-state torque-speed characteristics of the VSPM are considered with the three-phase SEIG equivalent circuit for evaluating the operating performances due to the inductive load variations. Furthermore, a PI closed-loop feedback voltage regulation scheme based on the static VAR compensator (SVC) for the three-phase SEIG driven by the VSPM is designed and considered for the wind power generation conditioner. The simulation and experimental results prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in terms of fast response and high performances.

IPLAN을 사용한 SSSC와 UPFC의 모델링과 정태해석에 미치는 영향 분석 (A Modelling and Analysis of SSSC and UPFC in Static Analysis of Power Systems)

  • 김덕영;조언중;이군재;이지열
    • 조명전기설비학회논문지
    • /
    • 제15권6호
    • /
    • pp.15-19
    • /
    • 2001
  • 본 논문은 SSSC와 UPEC의 모델링과 정태해석에 미치는 영향을 분석하였다. SSSC는 선로전류와 90도의 위상차를 갖도록 삽입전압원을 제어함으로써 선로의 유효전력을 제어하도록 하였으며, UPFC는 선로에 직·병렬로 연결된 변압기를 통하여 삽입전압원의 크기와 위상을 제어함으로써 선로의 유효·무효전력과 모선전압을 제어하도록 하였다. 시뮬레이션은 전력계통해석용 소프트웨어인 PSS/E를 사용하였으며, PSS/E의 외부매크로 프로그램인 IPLAN을 사용하여 PSS/E에서 아직 제공되지 않는 SSSC와 UPFC의 모델링 구현하였다. 모의해석 결과 계통변화에 의한 모선전압 변화시에 UPFC에 의한 모선전압 개선의 효과가 SSSC보다 넓은 범위에 걸터 효과적임 을 확인할 수 있었다.

  • PDF