• Title/Summary/Keyword: Static pile load tests

Search Result 111, Processing Time 0.023 seconds

Calculation of Base Load Capacity of Bored Pre-cast Piles Using New PHC PIles with Steel Pipe at Pile Toe (강관 부착 PHC파일로 시공된 매입말뚝의 선단지지력 산정)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.5-16
    • /
    • 2016
  • New PHC piles, where short steel pipes are attached to the pile toe, are developed to increase the base load capacity of bored pre-cast piles embedded in weathered rock. In this study, new bored pre-cast piles using the new PHC piles are installed at 7 test sites with different soil conditions, and static and dynamic pile load tests are performed to investigate quantitative characteristics on the base load capacity of new bored pre-cast piles. In addition, based on the static pile load test results, a new empirical equation for estimating the base load capacity of new bored pre-cast piles is proposed. A comparison between predicted and measured base load capacities shows that the proposed empirical equation produces conservative predictions for the new bored pre-cast piles. However, the existing design criterion significantly underestimates the base load capacity of new bored pre-cast piles.

Reliability Updates of Driven Piles Based on Bayesian Theory Using Proof Pile Load Test Results (베이지안 이론을 이용한 타입강관말뚝의 신뢰성 평가)

  • Park, Jae-Hyun;Kim, Dong-Wook;Kwak, Ki-Seok;Chung, Moon-Kyung;Kim, Jun-Young;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.161-170
    • /
    • 2010
  • For the development of load and resistance factor design, reliability analysis is required to calibrate resistance factors in the framework of reliability theory. The distribution of measured-to-predicted pile resistance ratio was obrained based on only the results of load tests conducted to failure for the assessment of uncertainty regarding pile resistance and used in the conventional reliability analysis. In other words, successful pile load test (piles resisted twice their design loads without failure) results were discarded, and therefore, were not reflected in the reliability analysis. In this paper, a new systematic method based on Bayesian theory is used to update reliability indices of driven steel pipe piles by adding more proof pile load test results, even not conducted to failure, to the prior distribution of pile resistance ratio. Fifty seven static pile load tests performed to failure in Korea were compiled for the construction of prior distribution of pile resistance ratio. The empirical method proposed by Meyerhof is used to calculate the predicted pile resistance. Reliability analyses were performed using the updated distribution of pile resistance ratio. The challenge of this study is that the distribution updates of pile resistance ratio are possible using the load test results even not conducted to failure, and that Bayesian updates are most effective when limited data are available for reliability analysis.

Estimation of End Bearing Capacity of SDA Augered Piles on Various Hearing Stratums (지지지반의 종류별 SDA매입말뚝의 선단지지력 산정)

  • Hong, Won-Pyo;Chai, Soo-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.111-129
    • /
    • 2007
  • The standard construction manual of the SDA(Separated Doughnut Auger) piling method was proposed so that the resisting capacity of the augered piles could work effectively. 405 dynamic pile load tests and 30 static pile load tests were performed for 265 test piles, which were installed by the SDA piling method in 33 sites in Korea. The results of the pile load tests showed that the end bearing capacity of the SDA augered piles depended on the property of various soil stratums and did not agree with ones estimated by the existing formula based on several standard design codes. On the basis of the pile load test results, four formulas were presented according to bearing stratums to estimate quantitatively the unit end bearing capacity of the SDA augered piles. The formulas for the unit end bearing capacity of piles on soils or weathered rocks were related to N-value given by SPT(Standard Penetration Test), while the unit end bearing capacity on bedrock was suggested to be more than 1500 $tf/m^2$. The presented formulas were compared with the existing formulas, which were presented by several standard design codes to design the augered piles. In order to use correctly the presented formulas, the quality of Standard Penetration Test should be controlled precisely. Also it is desirable to choose a pilot construction site, where both dynamic and static pile load tests are performed.

The Behavior of Bearing Capacity for the Precast files (기성말뚝의 지지거동)

  • 박영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.107-116
    • /
    • 2000
  • Dynamic and static load tests are conducted in four construction sites by using steel pipe piles(SPP) and concrete piles to compare differences of load bearing mechanism. Steel pipe piles are instrumented with electric strain gages and are subject to dynamic load tests during driving. The damage of strain gages attached is checked simultaneously. Static load test is also conducted on the same piles after two to seven days' elapse. Then load-settlement behavior and shaft and/or tip resistances are measured. As a result, the allowable bearing capacity calculated by the Davisson's offset method of CAPWAP analysis shows 2~33% larger than that of static load test. The average value of allowable bearing capacity of static load test is closer to the allowable capacity obtained at the safety factor of 2.5 applied on ultimate bearing capacity than to the one obtained from the Davisson's offset method. The analysis of strain gage readings shows that unit skin friction increases with depth. Furthermore, the friction mobilized around the 1~2m above the pile tip considerably contributes to the total shaft resistance.

  • PDF

A Study on The Decision of Allowable Bearing Capacity of PHC Piles (PHC Pile의 허용지지력 결정에 관한 연구)

  • 안종필;박주원;이광용
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.73-80
    • /
    • 1999
  • Analytical studies on piles so far have been directed toward prediction of bearing capacity under vertical loads. Various static and dynamic formulas have been used in predicting the ultimate bearing capacity of a pile. Further, the reliability of these formulas has been verified by comparing the predicted values with the pile load test measurements. Accordingly, by means of the ultimate load from the data measured by the actual field load tests of PHC piles, safety factors were compared and analyzed static and dynamic formula methods applying to 4 different sites. As a result, the safety factor by Meyerhof formula method indicates 3.0 and the safety factor by Hiley formula method indicates 5.0.

  • PDF

Evaluation of Yield Load in Pile Load Tests on Driven Piles (관입말뚝에 대한 연직재하시험시 항복하중의 판정법)

  • 홍원표;심기석
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 1989
  • In pile load tests on end bearing piles, generally, it is not possible to continue loading to the ultimate load. Thus, the concept of yield load has been introduced for determining design loads Iron the pile load test records. The conventional rules to determine the yield load were not available for evaluation on pile load test records obtained in 6 fields nearby westers 8r Southern Coasts in Korea. A new rule 9.as presented to determine easily the yield load, based on investigations on the pile load test records. The yield load of piles is determined at the infiection point on semi-logarithmic coordinates (P-logS), in which load is plotted in normal scale and settlement is plotted in logarithmic scale. This method may not only save much costs and times but also present safe luorking circumstances for pile load tests in field. It was found that the yield load represented the elastic limit of the pile load-settlement behalf.iota. The ultimate load, which is given at 25.4mm settlement on pile head, was 1.5 times of the yield load. The allowable long-term and short-term load capacities were, respectively, 50% and 75% of the yield load. The safety factors to get the allowable pile capacity were obtained as 2.0~4.0 for the equations to predict the static pile capacity.

  • PDF

Model Test of O-Cell Pile Load Test with Variable End Plate (가변선단재하판을 이용한 양방향말뚝재하시험의 모형실험)

  • Joo, Yong-Sun;Kim, Nak-Kyung;Kim, Sung-Kyu;Kim, Ung-Jin;Park, Jong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.476-481
    • /
    • 2009
  • Bi-directional load test is one of O-cell tests. The O-cell test is a system which may be used for performing static load tests on cast in situ reinforced concrete bored piles. The technique was devised and developed by Osterberg of Northwestern University(USA) and has been in use around the world. The principle of the method is that an O-cell is installed in a cast in situ bored pile base. Once the pile concrete reaches its design strength the cell is connected to an hydraulic pump and pressured. Pressurization causes the cell to expand, developing an upward force on the section of pile above the cell loads, pile movements and strains within the pile then enable the capacity of the pile and its load settlement curves to be ascertained. The O-cell pile load test with variable end plate is operated on second steps - the first step is to confirming end bearing capacity with variable end plate and the second step is similar to the conventional O-cell test. In the study, To calculate ultimate capacity of bi-directional load test using model with the pile with variable end plate O-cell.

  • PDF

A Field Test Study on Skin Friction Behavior of Driven Steel Piles (항타강관말뚝의 주면마찰저항 특성에 관한 현장실험 연구)

  • Lee, Min-Hee;Lee, Chung-Sook;Jung, Chang-Kyu;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.575-582
    • /
    • 2005
  • Static pile load tests for three instrumented driven steel pipe pies were performed. Based on the distributions of pile axial loads along the pile depth, Characteristics of unit skin friction were analyzed.

  • PDF

Reliability Analysis of Bearing Capacity Equations for Drilled Shafts Socketed in Weathered Rock (풍화암에 근입된 현장타설말뚝 지지력 공식의 신뢰성 분석)

  • Jung, Sung-Jun;Kim, Sung-Ryul;So, Jin-Man;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.85-92
    • /
    • 2007
  • As the use of drilled shafts for foundation of a large size structure increases, the evaluation of the reliable bearing capacity of the pile has become important. The purpose of this study is to verify the reliability of bearing capacity equations for drilled shafts socketed in weathered rock by comparing the bearing capacity values from static load tests with values from bearing capacity equations. In this study, twelve data from static load test were selected from four field sites, and the data of load test and the properties of weathered rock were analyzed. Three methods widely used in practice were selected for analysis, namely the AASHTO method (1996), Carter & Kulhawy method (1988), and FHWA method (1999). The comparison of the bearing capacity values from the bearing capacity equations to those obtained from load tests showed that the Carter & Kulhawy method (1988) was the most reliable in giving conservative design values and smaller COV (Coefficient Of Variation).

A Study on the Vertical Bearing Capacity of Batter Piles Subjected to Vertical Load (연직하중을 받는 경사말뚝의 연직지지력에 관한 연구)

  • 성인출;이민희;최용규;권오균
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.49-55
    • /
    • 2003
  • In this study, based on the relationship of the vertical force - settlement of batter piles obtained by pressure chamber model tests, the vertical bearing capacity of vertical and batter piles according to the increase of pile inclination was analyzed. A model open - ended steel pipe pile with the inclination of 5$^\circ$, 10$^\circ$ and 15$^\circ$ was driven into saturated fine sand with relative density of 50 %, and the static compression load tests were performed under each confining pressure of 35, 70 and 120 kPa in pressure chamber. The vertical bearing capacity of pile obtained from pressure chamber tests increased with the pile inclination. In the case of the inclination of 5$^\circ$, 10$^\circ$, 15$^\circ$, increasing ratios of pile bearing capacity were 111, 121, 127 ~ 140 % of vertical bearing capacity respectively. In the case of the inclination of above 20$^\circ$, the model tests could not be performed because of pile of pile head during compressive loading on the pile head.