• Title/Summary/Keyword: Static output feedback

Search Result 92, Processing Time 0.027 seconds

Output Feedback Passivation of Non-square Linear Systems Using an Input-Dimensional Compensator (입력 차수 보상기를 이용한 비정방 선형 시스템의 출력 궤환 수동화)

  • 손영익
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.1
    • /
    • pp.10-15
    • /
    • 2004
  • We present a state-space approach to make non-square linear systems strictly passive by using an input-dimensional parallel feedforward compensator. A necessary and sufficient condition for the existence of the parallel feedforward compensator is given by the static output feedback formulation, which enables to utilize linear matrix inequality. By modifying the structure of the compensator the additional technical assumption in the previous result [1] is removed. The effectiveness of the proposed method is illustrated by some numerical examples which can be stabilized by the proportional-derivative (PD) and proportional-derivative-integral (PID) control laws. The proposed control scheme can successfully replace the measurements of derivative terms in the control laws.

Design of a dynamic output feedback law for replacing the output derivatives

  • Son, Young-I.;Shim, Hyung-Bo;Jo, Nam-H.;Kim, Kab-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.337-341
    • /
    • 2003
  • This paper provides a design method for a dynamic output feedback controller which stabilizes a class of linear time invariant systems. We suppose all the states of the given system is not measurable and only the outputs are used to stabilize the system. The systems considered cannot be stabilized by a static output feedback only. In the scheme we first assume that the given system can be stabilized by a state feedback composed of its output, velocity of the output and its higher order derivative terms. Instead of using the derivatives of the output, however, a dynamic system is constructed systematically which replaces the role of the derivative terms. Then, a high-gain output feedback stabilizes the composite system together with the newly constructed system. The performance of the proposed control law is illustrated in the comparative simulation studies of a numerical example with an observer-based control law.

  • PDF

Input-output linearization of nonlinear systems via dynamic feedback (비선형 시스템의 동적 궤한 입출력 선형화)

  • 김용민;이홍기;전홍태
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.40-57
    • /
    • 1998
  • The dynamic feedback is well-known to be much more powerful tool compensating the ononlinearity in nonlinear control system than the static one. In this paepr we consider the input-output linearization problem via a regular dynamic feedback which is to make linear the input-dependent part of the output sufficient conditions for the existence of such a regular dynamic feedback control law, after defining the structure algorithm for a dynamic feedback.

  • PDF

A New Robust Discrete Integral Static Output Feedback Variable Structure Controller with Disturbance Observer and Integral Dynamic-Type Sliding Surface for Uncertain Discrete Systems (불확실 이산 시스템을 위한 외란관측기와 적분 동특성형 슬라이딩 면을 갖는 새로운 둔감한 이산 적분 정적 출력 궤환 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1289-1294
    • /
    • 2010
  • In this paper, a new discrete integral static output feedback variable structure controller based on the a new integral dynamic-type sliding surface and output feedback discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed integral dynamic-type sliding surface. The output feedback discrete version of disturbance observer is presented for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined integral dynamic-type sliding surface for guaranteeing the designed output in the integral dynamic-type sliding surface from any initial condition for all the parameter variations and disturbances. Using discrete Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

Static Output Feedback Model Predictive Tracking Control for Linear Systems with Uncertainty

  • Kim, San-Gun;Lee, Sang-Moon;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.292-295
    • /
    • 2003
  • In this paper, we present static output feedback model predictive tracking control for linear system with uncertainty. The proposed control law is based on integral action form to provide zero o��set for constant command signals and the closed loop stability is guaranteed under linear matrix inequality conditions on the terminal weighting matrix using the decreasing monotonicity property of the performance index. Through simulation examples, we illustrate that the proposed schemes can be appropriate tracking controllers for uncertain system.

  • PDF

Static Output Feedback Robust $H_{\infty}$ Fuzzy Control of Nonlinear Systems with Time-Varying Delay (시변 지연이 있는 비선형 시스템에 대한 $H_{\infty}$ 퍼지 강인제어기 설계)

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.379-381
    • /
    • 2004
  • In this paper, a robust $H_{\infty}$ stabilization problem to a uncertain fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-varying delayed state. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H_{\infty}$ controllers are given in terms of linear matrix inequalities.

  • PDF

Design of a Static Output Feedback Stabilization Controller by Solving a Rank-constrained LMI Problem (선형행렬부등식을 이용한 정적출력궤환 제어기 설계)

  • Kim Seogj-Joo;Kwon Soonman;Kim Chung-Kyung;Moon Young-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.747-752
    • /
    • 2004
  • This paper presents an iterative linear matrix inequality (LMI) approach to the design of a static output feedback (SOF) stabilization controller. A linear penalty function is incorporated into the objective function for the non-convex rank constraint so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. Hence, the overall procedure results in solving a series of semidefinite programs (SDPs). With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Extensive numerical experiments are Deformed to illustrate the proposed algorithm.

Robust H${\infty}$Fuzzy Control of Nonlinear Systems with Time-Varying Delay via Static Output Feedback

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1486-1491
    • /
    • 2005
  • In this paper, a robust H${\infty}$ stabilization problem to a uncertain fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent uncertain nonlinear systems with time-varying delayed state, which is a continuous-time or discrete-time system. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust H${\infty}$controllers are given in terms of linear matrix inequalities.

  • PDF

Structured Static Output Feedback Stabilization (구조적인 제약을 갖는 정적 출력 되먹임 안정화 제어기)

  • Lee, Joon Hwa
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.155-159
    • /
    • 2013
  • In this paper, a nonlinear matrix inequality problem and a nonlinear optimization problem are proposed for obtaining a structured static output feedback controller. The proposed nonlinear optimization problem has LMI (Linear Matrix Inequality) constraints and a nonlinear objective function. Using the conditional gradient method, the nonlinear optimization problem can be solved. A numerical example shows the effectiveness of the proposed approach.

Robust Parallel Compensator Design for Static Output Feedback Stabilization of Plants with Multiple Uncertainty

  • Deng, Mingcong;Iwai, Zenta;Kajihara, Takahiro;Hasegawa, Keiji;Mizumoto, Ikuro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.1-4
    • /
    • 1999
  • This paper presents a design scheme of robust parallel compensator for plants with multiple uncertainty, which realizes strict positive realness of the closed-loop system by using static output feedback. Further, an ap-proximate relation between the static output feedback control system with the proposed compensator and the PID$.$‥D$\^$r-1 control system is shown.

  • PDF