• 제목/요약/키워드: Static Structural

검색결과 2,325건 처리시간 0.026초

SAS 반응기의 구조 안전성 평가 연구 (Study for Accessment of Structural Stability of SAS Reactor)

  • 이은우;정의동;김윤춘;김종배
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.43-49
    • /
    • 1995
  • Sasol Advanced Synthol Reactor was divided into two chambers by grid plate perforated with diffuser holes. The reactor has high stress level beacuse of membrane stress due to internal pressure, thermal stress due to temperature difference and local stress due to structural discontinuity at the juncture of grid plate and shell. Moreover, geometric nonlinear behaviors may appear in the grid plate because of pressure difference between two chambers. In order to survey the stress level and geometric nonlinear behaviors around grid plate, heat transfer analysis, linear static analysis and geometric nonlinear analysis were performed using NISA II developed by EMRC. This paper demonstrates the result of accessment for linear static and geometric nonlinear analysis under various load combinations.

  • PDF

Zetlin형 케이블 돔 구조물의 정적 불안정 거동에 관한 연구 (A Study on the Static Instability Behaviour of the Zetlin Type Cable Dome Structures)

  • 김형석;김승덕;강문명
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.541-548
    • /
    • 2002
  • Membrane, cable structure and membrane-cable structural system are more lighter than another common structural system, and these are able to be effectively build Lip spatial structures using axial stiffness. However when the load reach at critical load level, it might be happened snap-through or bifurcation according to the structure's shape, and these collapse mechanism should be very important in the design of structures. So, In this paper we study static instability of Zetlin-type cable dome, one of the hybrid cable dome. Moreover, as the unstable behavior of shell structures are very sensitive to the initial condition, we seek to find the effect of initial condition.

  • PDF

Linear shell elements for active piezoelectric laminates

  • Rama, Gil;Marinkovic, Dragan Z.;Zehn, Manfred W.
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.729-737
    • /
    • 2017
  • Piezoelectric composite laminates are a powerful material system that offers vast options to improve structural behavior. Successful design of piezoelectric adaptive structures and testing of control laws call for highly accurate, reliable and numerically efficient numerical tools. This paper puts focus onto linear and geometrically nonlinear static and dynamic analysis of smart structures made of such a material system. For this purpose, highly efficient linear 3-node and 4-node finite shell elements are proposed. Both elements employ the Mindlin-Reissner kinematics. The shear locking effect is treated by the discrete shear gap (DSG) technique with the 3-node element and by the assumed natural strain (ANS) approach with the 4-node element. Geometrically nonlinear effects are considered using the co-rotational approach. Static and dynamic examples involving actuator and sensor function of piezoelectric layers are considered.

Effects of tensioning forces on the structural behavior of cable-stayed bridges

  • Lam, Pauline Lin Li;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.457-464
    • /
    • 2022
  • Optimization in distribution of stay cable forces is one of the most difficult aspects in the design of cable-stayed bridges. This article attempts to examine tension force influence on structural behavior of cable-stayed bridges. For the examination, finite element modeling using nonlinear static and nonlinear modal analyses was completed and compared to structural experimental results. Variables analyzed in this parametric study were: 1) Number of stay cables; 2) Tension of the stay cables, and 3) Stay cable pattern - harp and semi-fan patterns. Though the findings from the analysis are limited to the tested models, the study gives insight on the structural behavior of actual cable stayed bridges.

Static displacement and elastic buckling characteristics of structural pipe-in-pipe cross-sections

  • Sato, M.;Patel, M.H.;Trarieux, F.
    • Structural Engineering and Mechanics
    • /
    • 제30권3호
    • /
    • pp.263-278
    • /
    • 2008
  • Structural pipe-in-pipe cross-sections have significant potential for application in offshore oil and gas production systems because of their property that combines insulation performance with structural strength in an integrated way. Such cross-sections comprise inner and outer thin walled pipes with the annulus between them fully filled by a selectable thick filler material to impart an appropriate combination of properties. Structural pipe-in-pipe cross-sections can exhibit several different collapse mechanisms and the basis of the preferential occurrence of one over others is of interest. This paper presents an elastic analyses of a structural pipe-in-pipe cross-section when subjected to external hydrostatic pressure. It formulates and solves the static and elastic buckling problem using the variational principle of minimum potential energy. The paper also investigates a simplified formulation of the problem where the outer pipe and its contact with the filler material is considered as a 'pipe on an elastic foundation'. Results are presented to show the variation of elastic buckling pressure with the relative elastic modulus of the filler and pipe materials, the filler thickness and the thicknesses of the inner and outer pipes. The range of applicability of the simplified 'pipe on an elastic foundation' analysis is also presented. A brief review of the types of materials that could be used as the filler is combined with the results of the analysis to draw conclusions about elastic buckling behaviour of structural pipe-in-pipe cross-sections.

헬리콥터 무베이링 메인 로터 허브 시스템의 구조 건전성에 관한 연구 (Study on Structural Integrity of Bearingless Main Rotor Hub System of Helicopter)

  • 이무형;박일경;김성준;황인희;김태주
    • 한국항공운항학회지
    • /
    • 제20권4호
    • /
    • pp.50-56
    • /
    • 2012
  • Rotor system is a very important part which produce lift, thrust and control force in helicopter. Component of rotor system must have structural integrity for applied load. The estimation of structural integrity is regarded greatly as important in aerospace field. In this study, the process of structural analysis performed for bearingless main rotor system of helicopter. The composite flexbeam and torque tube of bearingless main rotor are very thick, so 3D layered soild elements of MSC.PATRAN were used to get the finite element analysis results. To estimate structural integrity, non-linear static analysis considering geometric non-linearity is performed. In addition, detailed finete element analysis and non-linear static analysis are performed to consider the stress concentration for fitting effect and contact surface. The estimation process of structural integrity for bearingless main rotor system of helicopter may help the design.

구조해석을 통한 보조발전기 경량화에 관한 연구 (A Study on the Light Weighting of APU through Structural Analysis)

  • 김혜은;김진훈;노상완;김병호;백현무
    • 품질경영학회지
    • /
    • 제47권4호
    • /
    • pp.895-910
    • /
    • 2019
  • Purpose: The purpose of this study is to lighten the APU (Auxiliary Power Unit) structure of the KAAV (Korea Assault Amphibious Vehicle) through structural analysis. Methods: Commercially-available program (MIDAS.NFX) was used for finite element analysis. Frequency response analysis was performed through linear static and mode analyses to verify the structural stability according to the change of the structural materials. Results: Numerical simulation (linear static, mode and frequency response analyses) results showed that the safety factor of the APU was over 1.5 even under the worst case conditions. The APU made by aluminum structures was expected to be available in the military field, since every requirements in the KDS (Korean Defense Specifications) was fulfilled during the various tests and evaluations. Conclusion: The structural analysis was verified that the structural stability of the APU structure of the KAAV after change of the structural material.

Structural design optimization of racing motor boat based on nonlinear finite element analysis

  • Song, Ha-Cheol;Kim, Tae-Jun;Jang, Chang-Doo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권4호
    • /
    • pp.217-222
    • /
    • 2010
  • Since 1980's, optimum design techniques for ship structural design have been developed to the preliminary design which aims at minimum weight or minimum cost design of mid-ship section based on analytic structural analysis. But the optimum structural design researches about the application for the detail design of local structure based on FEA have been still insufficient. This paper presents optimization technique for the detail design of a racing motor boat. To improve the performance and reduce the damage of a real existing racing boat, direct structural analyses; static and non-linear transient dynamic analyses, were carried out to check the constraints of minimum weight design. As a result, it is shown that the optimum structural design of a racing boat has to be focused on reducing impulse response from pitching motion than static response because the dynamic effect is more dominant. Optimum design algorithm based on nonlinear finite element analysis for a racing motor boat was developed and coded to ANSYS, and its applicability for actual structural design was verifed.

Behaviour of welded beam-to-column joints subjected to the static load

  • Skejic, Davor;Dujmovic, Darko;Androic, Boris
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.17-35
    • /
    • 2008
  • Neglecting the real joint behaviour in frame analysis may result in unrealistic predictions of the response and reliability of steel frames. The reliability of the prediction of main joint properties according to the component method (Eurocode 3-Part 1.8) still remains open to further investigation. The first step toward the solution is to compare the theoretical expressions given in EN 1993-1-8 and the experimental results. With that goal in mind six nominally the same, but really different specimens of welded beam-to-column joints subjected to static load were tested. The specimens present a combination of nominally identical structural elements produced in different European mills. This paper provides these tests, as well as their detailed evaulation and interpretation. All three joint structural properties (rotational stiffness, moment resistance and rotation capacity) have been considered. Four models for determining the plastic resistance out of experimental Mj-${\phi}$ curves have been applied. The results that have been discussed in detail, point to the fact that EN 1993-1-8 underestimates the real structural properties of the tested type of joint, as well as to the conclusion that detailed research of this problem needs to be conducted using the probabilistic reliability methods.