• Title/Summary/Keyword: States and Modes Analysis

Search Result 47, Processing Time 0.026 seconds

Analysis of a 2-Unit Standby Redundant System of Reparable 3-State Devices

  • Park, Young Taek
    • Journal of Korean Society for Quality Management
    • /
    • v.10 no.1
    • /
    • pp.13-15
    • /
    • 1982
  • A device is said to have three states if it has one good state and two mutually exclusive failure modes ; e. g., in one failure mode, it operates when it should not, in the other it doesn't operate when it Should. Some examples of such device include a fluid flow valve, an automatic machine, and an explosive. A Markov model is developed to obtain the availability Function of a 2-unit standby redundant system of such devices.

  • PDF

A Study on Vibration Characteristics of Moisture Separator for APR1400 Steam Generator (APR1400 증기발생기 습분분리기 진동 특성에 관한 연구)

  • Cho, Minki;Park, Taejung;Ha, Changhoon;Park, Luke
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.99-101
    • /
    • 2014
  • A Comprehensive Vibration Assessment Program (CVAP) for steam generator internals (SGI) of Advanced Power Reactor 1400 (APR1400) is being performed in accordance with the United States Nuclear Regulatory Commission (U.S. NRC) Regulatory Guide 1.20 (RG 1.20) revision 3. This paper studies the vibration characteristics of moisture separator assembly as part of the vibration and stress analysis program for APR1400 SGI CVAP. The natural frequencies, mode shapes, and structural behavior of moisture separator assembly were investigated through modal analysis using finite element method and experimental measurement. Since the moisture separator consists of several items with complicated shape, an idealized shell model was used in the finite element analysis. Group of local modes caused by moisture separators and significant modes of shroud and separator support plate were identified. The results of this paper are to be utilized in the structural response analysis of moisture separator assembly.

  • PDF

Fatigue Life Prediction of Laminated Composite Materials by Multiple S-N Curves and Lamina-Level Failure Criteria

  • Hangil You;Dongwon Ha;Young Sik Joo;Gun Jin Yun
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.42-47
    • /
    • 2023
  • In this paper, we present a fatigue life prediction methodology using multiple S-N curves according to the different stress states of laminated composites. The stress states of the plies of the laminated composites are classified into five modes: longitudinal tension or compression and transverse tension or compression, and shear according to the maximum stress criterion and Puck's criterion with a scaling factor K. This methodology has advantages in computational cost, and it can also consider microstructural characteristics of the composites by applying different S-N curves. The S-N curves for the fatigue analysis are obtained by experimental fatigue test. The proposed methodol is implemented into commercial software, ABAQUS user material subroutine and therefore, the fatigue analysis is conducted using the structural analysis results. The finite element (FE) simulation results are presented for unidirectional composites with and without open-hole. The FE simulation results show that the stress condition is different depending on the fiber orientation of the unidirectional composite, so the fatigue life is calculated with different S-N curves.

Stabilizing Control of DC/DC Buck Converters with Constant Power Loads in Continuous Conduction and Discontinuous Conduction Modes Using Digital Power Alignment Technique

  • Khaligh Alireza;Emadi Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.63-72
    • /
    • 2006
  • The purpose of this raper is to address the negative impedance instability in DC/DC converters. We present the negative impedance instability of PWM DC/DC converters loaded by constant power loads (CPLs). An approach to design digital controllers for DC/DC converters Is presented. The proposed method, called Power Alignment control technique, is applied to DC/DC step-down choppers operating in continuous conduction or discontinuous conduction modes with CPLs. This approach uses two predefined state variables instead of conventional pulse width modulation (PWM) to regulate the output voltage. A comparator compares actual output voltage with the reference and then switches between the appropriate states. It needs few logic gates and comparators to be implemented thus, making it extremely simple and easy to develop using a low-cost application specific integrated circuit (ASIC) for converters with CPLs. Furthermore, stability of the proposed controllers using the small signal analysis as well as the second theorem of Lyapunov is verified. Finally, simulation and analytical results are presented to describe and verify the proposed technique.

Fatigue property analysis of U rib-to-crossbeam connections under heavy traffic vehicle load considering in-plane shear stress

  • Yang, Haibo;Qian, Hongliang;Wang, Ping
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.271-280
    • /
    • 2021
  • In this study, the fatigue property of U rib-to-crossbeam connections in orthotropic steel bridge (OSB) crossbeams under heavy traffic vehicle load was investigated considering the effects of in-plane shear stress. The applicability of an improved structural stress (ISS) method was validated for the fatigue behavior analysis of nonwelded arc-shaped cutout regions in multiaxial stress states. Various types of fatigue testing specimens were compared for investigating the equivalent structural stress, fatigue crack initiation positions, and failure modes with the unified standards. Furthermore, the implications of OSB crossbeams and specified loading cases are discussed with respect to the improved method. The ISS method is proven to be applicable for analyzing the fatigue property of nonwelded arc-shaped cutout regions in OSB crossbeams. The used method is essential for gaining a reliable prediction of the most likely failure modes under a specific heavy traffic vehicle load. The evaluated results using the used method are proven to be accurate with a slighter standard deviation. We obtained the trend of equivalent structural stress in arc-shaped cutout regions and validated the crack initiation positions and propagation directions by comparing them with the fatigue testing results. The implications of crossbeam spans on fatigue property are less significant than the effects of crossbeams.

Investigating the underlying structure of particulate matter concentrations: a functional exploratory data analysis study using California monitoring data

  • Montoya, Eduardo L.
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.619-631
    • /
    • 2018
  • Functional data analysis continues to attract interest because advances in technology across many fields have increasingly permitted measurements to be made from continuous processes on a discretized scale. Particulate matter is among the most harmful air pollutants affecting public health and the environment, and levels of PM10 (particles less than 10 micrometers in diameter) for regions of California remain among the highest in the United States. The relatively high frequency of particulate matter sampling enables us to regard the data as functional data. In this work, we investigate the dominant modes of variation of PM10 using functional data analysis methodologies. Our analysis provides insight into the underlying data structure of PM10, and it captures the size and temporal variation of this underlying data structure. In addition, our study shows that certain aspects of size and temporal variation of the underlying PM10 structure are associated with changes in large-scale climate indices that quantify variations of sea surface temperature and atmospheric circulation patterns.

NONLINEAR FLUTTER ANALYSIS USING INVISCID REDUCED ORDER MODELING TECHNIQUE (비점성 저차모델링 기법을 활용한 비선형 플러터 해석)

  • Kim, Y.H.;Kim, D.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.458-464
    • /
    • 2011
  • A new method identifies coupled fluid-structure system with a reduced set of state variables is presented. Assuming that the structural model is known a priori either from an analysis or a test and using linear transformations between structural and aeroelastic states, it is possible to deduce aerodynamic information from sampled time histories of the aeroelastic system. More specifically given a finite set of structural modes the method extracts generalized aerodynamic force matrix corresponding to these mode shapes. Once the aerodynamic forces are known, an aeroelastic reduced-order model can be constructed in discrete-time, state-space format by coupling the structural model and the aerodynamic system. The resulting reduced-order model is suitable for constant Mach, varying density analysis.

  • PDF

Condition assessment for high-speed railway bridges based on train-induced strain response

  • Li, Zhonglong;Li, Shunlong;Lv, Jia;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.199-219
    • /
    • 2015
  • This paper presents the non-destructive evaluation of a high-speed railway bridge using train-induced strain responses. Based on the train-track-bridge interaction analysis, the strain responses of a high-speed railway bridge under moving trains with different operation status could be calculated. The train induced strain responses could be divided into two parts: the force vibration stage and the free vibration stage. The strain-displacement relationship is analysed and used for deriving critical displacements from theoretical stain measurements at a forced vibration stage. The derived displacements would be suitable for the condition assessment of the bridge through design specifications defined indexes and would show certain limits to the practical application. Thus, the damage identification of high-speed railways, such as the stiffness degradation location, needs to be done by comparing the measured strain response under moving trains in different states because the vehicle types of high-speed railway are relatively clear and definite. The monitored strain responses at the free vibration stage, after trains pass through the bridge, would be used for identifying the strain modes. The relationship between and the degradation degree and the strain mode shapes shows certain rules for the widely used simply supported beam bridges. The numerical simulation proves simple and effective for the proposed method to locate and quantify the stiffness degradation.

Investigation on the phonon behavior of MgB2 films via polarized Raman spectra

  • R. P. Putra;J. Y. Oh;G. H. An;H. S. Lee;B. Kang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.14-19
    • /
    • 2024
  • In this study, we explore the anisotropy of electron-phonon coupling (EPC) constant in epitaxially grown MgB2 films on c-axis oriented Al2O3, examining its correlation with the critical temperature (Tc) and local structural disorder assessed through polarized Raman scattering. Analysis of the polarized Raman spectra reveals angle-dependent variations in the intensity of the phonon spectra. The Raman active mode originating from the boron plane, along with two additional phonon modes from the phonon density of states (PDOS) induced by lattice distortion, was distinctly observed. Persistent impurity scattering, likely attributed to oxygen diffusion, was noted at consistent frequencies across all measurement angles. The EPC values derived from the primary Raman active phonon do not significantly vary with changing observation angles, followed by that the Tc values calculated using the Allen and Dynes formula remain relatively constant across all polarization angles. Although the E2g phonon mode plays a crucial role in the EPC mechanism, the determination of Tc values in MgB2 involves not only electron-E2g coupling but also contributions from other phonon modes.

Analytical model of EEG by statistical mechanics of neocortical interaction

  • Park, J.M.;M.C. Whang;B.H. Bae;Kim, S.Y.;Kim, C.J.
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.165-175
    • /
    • 1997
  • Brain potential is described by using Euler Lagrange equation derived from Lagrangian based on SMNI(Statistical Mechanics of Neocortical Interaction). It is assumed that excitatory neuron firing is amplitude-modulated dominantly by the sum of two modes of frequency ${\omega}and 2 {\omega}$ . Time series of this neuron firing is numerically calculated. $I_{L}$related to low frequency distribution of power spectrum, $I_{H}$high frequency, and S(standard deviation) are introduced for the effective extraction of the dynamic property in this simulated brain potential. $I_{L}$,$I_{H}$, and S are obtained from EEG of 4 persons in rest state and are compared with thoretical results. It is of importance in various fields related to human well-being such as comfort-pursued industrial design, psychology, medicine to characterize human emotional states by EEG analysis. The pleasant and unpleasant sensation among various emotional states would be demonstrated to be determined in terms of ${\epsilon}$ and ${\gamma}$ parameters estimated by the simulated $I_{L}$-$I_{H}$-S relations.

  • PDF