• Title/Summary/Keyword: State-space approach

Search Result 355, Processing Time 0.03 seconds

Stabilzed Control of an Inverted Pendulum Cart System Using the Optimal Regulator (최적 Regulator를 이용한 도립진자 시스템의 안정화 제어)

  • 박영식;최부귀
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.4
    • /
    • pp.315-323
    • /
    • 1990
  • A design technique of dynamic stabilization controller for the intrinsic unstable inverted pendulum system is introduced. Mathematical modelling with the more complex nonlinearity and the stabilized control theory presented by C.D.Johnson are adapted to this system by using the state-space approach. And the Stabilized controller with the designed optimal regulator type which can be fastly tracked and can be accurately counteracted aginst all effects of the constant distrubances and the parameteric variations is simulated and is implemeted successfully on the microcomputer.

  • PDF

Sensitivity-based reliability analysis of earth slopes using finite element method

  • Ji, Jian;Liao, Hong-Jian
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.545-560
    • /
    • 2014
  • For slope stability analysis, an alternative to the classical limit equilibrium method (LEM) of slices is the shear strength reduction method (SRM), which can be integrated into finite element analysis or finite difference analysis. Recently, probabilistic analysis of earth slopes has been very attractive because it is capable to take the soil uncertainty into account. However, the SRM is less commonly extended to probabilistic framework compared to a variety of probabilistic LEM analysis of earth slopes. To overcome some limitations that hinder the development of probabilistic SRM stability analysis, a new procedure based on recursive algorithm FORM with sensitivity analysis in the space of original variables is proposed. It can be used to deal with correlated non-normal variables subjected to implicit limit state surface. Using the proposed approach, a probabilistic finite element analysis of the stability of an existing earth dam is carried out in this paper.

One-Cycle Control Strategy with Active Damping for AC-DC Matrix Converter

  • Liu, Xiao;Zhang, Qingfan;Hou, Dianli
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.778-787
    • /
    • 2014
  • This study presents an input filter resonance mitigation method for an AC-DC matrix converter. This method combines the advantages of the one-cycle control strategy and the active damping technique. Unnecessary sensors are removed, and system cost is reduced by employing the grid-side input currents as feedback to damp out LC resonance. A model that includes the proposed method and the input filter is established with consideration of the delay caused by the actual controller. A zero-pole map is employed to analyze model stability and to investigate virtual resistor parameter design principles. Based on a double closed-loop control scheme, the one-cycle control strategy does not require any complex modulation index control. Thus, this strategy can be more easily implemented than traditional space vector-based methods. Experimental results demonstrate the veracity of theoretical analysis and the feasibility of the proposed approach.

A Vibration Control of a Flexible Beam using a Nonlinear Compensator with Complex Dual-Input Describing Function (복소쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 진동제어)

  • 권세현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.227-235
    • /
    • 1999
  • In this paper a vibration control fo a one-link flexible beam is considered. At first a state-space model for a flexible beam is derived by using the assumed-modes approach. Based on this model the transfer function between the applied torque and the tip deflection fo the beam is presented because it is convenient to apply our method. In general there exist some control difference due to flexibility of the beam so we adop a forward-passive controller to reduce these phenomena. And a complex dual-input describing function compensator is used to control the tip deflection. The stabiltiy and the performance of the closed-loop system are analyzed. Finally the validity of the derived model and the effectiveness of proposed controller are confirmed throuth simula-tions and experiments.

  • PDF

Petri Nets Modeling Using Relational Algebra (관계 대수를 이용한 페트리 네트의 모델링)

  • Young Chan Kim
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.12-12
    • /
    • 1992
  • This paper proposes an analysis method of Petri nets (PNs) using the relational algebra (RA). More specifically, we represent PNs in relations of the relational model. Based on such representation, we first develop an algorithms for analyzing properties of PNs, such as boundedness, conservation, coverability, reachability, and liveness. The advantage of this approach is as follows: First, the algorithms represented by RA can be easily converted to a query language such as SQL of the widely used, commercial relational database management systems (DBMSs). Second, we can alleviate the problem of state space explosion because relational DBMSs can handle large amounts of data efficiency. Finally, we can use the DBMS's query language to interpret the Petri nets and make simulation.

  • PDF

Modeling of Petri Nets Using Relatinal Algebra (관계 대수를 이용한 페트리 네트의 모델링)

  • 김영찬
    • Journal of the Korea Society for Simulation
    • /
    • v.1 no.1
    • /
    • pp.37-47
    • /
    • 1992
  • This paper proposes an analysis method of petri nets(PNs) using the relational algebra(RA). More wpecifically, we represent PNs in relations of the relational model. Based on such representation, we first develop an algorithm for generating reachability trees of PNs. we then develop an algorithm for generating reachability trees of PNs. We then develop algorithms for analyzing properties of PNs, such as boundedness, conservation, coverability, reachability, and liveness. The advantage of this approach is as follows: First, the algorithms represented by RA can be easity converted to a query language such as SQL of the widely used, commerical relational database management systems(DBMSs). Second, we can alleviate the problem of state space explosion because relational DBMSs can handle large amounts of data efficiently. Finally, we can use the DBMS's query language to interpret the Petri nets and make simulation.

  • PDF

An approach to the coupled dynamics of small lead cooled fast reactors

  • Zarei, M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1272-1278
    • /
    • 2019
  • A lumped kinetic modeling platform is developed to investigate the coupled nuclear/thermo-fluid features of the closed natural circulation loop in a low power lead cooled fast reactor. This coolant material serves a reliable choice with noticeable thermo-physical safety characteristics in terms of natural convection. Boussienesq approximation is resorted to appropriately reduce the governing partial differential equations (PDEs) for the fluid flow into a set of ordinary differential equations (ODEs). As a main contributing step, the coolant circulation speed is accordingly correlated to the loop operational power and temperature levels. Further temporal analysis and control synthesis activities may thus be carried out within a more consistent state space framework. Nyquist stability criterion is thereafter employed to carry out a sensitivity analysis for the system stability at various power and heat sink temperature levels and results confirm a widely stable natural circulation loop.

Energy-Saving Oriented On/Off Strategies in Heterogeneous Networks : an Asynchronous Approach with Dynamic Traffic Variations

  • Tang, Lun;Wang, Weili;Chen, Qianbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5449-5464
    • /
    • 2018
  • Recent works have validated the possibility of reducing the energy consumption in wireless heterogeneous networks, achieved by switching on/off some base stations (BSs) dynamically. In this paper, to realize energy conservation, the discrete time Markov Decision Process (DTMDP) is developed to match up the BS switching operations with the traffic load variations. Then, an asynchronous decision-making algorithm, which is based on the Bellman equation and the on/off priorities of the BSs, is firstly put forward and proved to be optimal in this paper. Through reducing the state and action space during one decision, the proposed asynchronous algorithm can avoid the "curse of dimensionality" occurred in DTMDP frequently. Finally, numerical simulations are conducted to validate the effectiveness and advantages of the proposed asynchronous on/off strategies.

Analytic Linearization of Symbolic Nonlinear Equations (기호 비선형 방정식의 해석적 선형화)

  • Song, Sung-Jae;Moon, Hong-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.145-151
    • /
    • 1995
  • The first-order Taylor series expansion can be evaluated analytically from the formulated symbolic nonlinear dynamic equations. A closed-form linear dynamic euation is derived about a nominal trajectory. The state space representation of the linearized dynamics can be derived easily from the closed-form linear dynamic equations. But manual symbolic expansion of dynamic equations and linearization is tedious, time-consuming and error-prone. So it is desirable to manipulate the procedures using a computer. In this paper, the analytic linearization is performed using the symbolic language MATHEMATICA. Two examples are given to illustrate the approach anbd to compare nonlinear model with linear model.

  • PDF

QPlayer: Lightweight, scalable, and fast quantum simulator

  • Ki-Sung Jin;Gyu-Il Cha
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.304-317
    • /
    • 2023
  • With the rapid evolution of quantum computing, digital quantum simulations are essential for quantum algorithm verification, quantum error analysis, and new quantum applications. However, the exponential increase in memory overhead and operation time is challenging issues that have not been solved for years. We propose a novel approach that provides more qubits and faster quantum operations with smaller memory than before. Our method selectively tracks realized quantum states using a reduced quantum state representation scheme instead of loading the entire quantum states into memory. This method dramatically reduces memory space ensuring fast quantum computations without compromising the global quantum states. Furthermore, our empirical evaluation reveals that our proposed idea outperforms traditional methods for various algorithms. We verified that the Grover algorithm supports up to 55 qubits and the surface code algorithm supports up to 85 qubits in 512 GB memory on a single computational node, which is against the previous studies that support only between 35 qubits and 49 qubits.