DOI QR코드

DOI QR Code

QPlayer: Lightweight, scalable, and fast quantum simulator

  • Ki-Sung Jin (Future Computing Research Division, Electronics and Telecommunications Research Institute) ;
  • Gyu-Il Cha (Future Computing Research Division, Electronics and Telecommunications Research Institute)
  • Received : 2021.11.17
  • Accepted : 2022.04.22
  • Published : 2023.04.20

Abstract

With the rapid evolution of quantum computing, digital quantum simulations are essential for quantum algorithm verification, quantum error analysis, and new quantum applications. However, the exponential increase in memory overhead and operation time is challenging issues that have not been solved for years. We propose a novel approach that provides more qubits and faster quantum operations with smaller memory than before. Our method selectively tracks realized quantum states using a reduced quantum state representation scheme instead of loading the entire quantum states into memory. This method dramatically reduces memory space ensuring fast quantum computations without compromising the global quantum states. Furthermore, our empirical evaluation reveals that our proposed idea outperforms traditional methods for various algorithms. We verified that the Grover algorithm supports up to 55 qubits and the surface code algorithm supports up to 85 qubits in 512 GB memory on a single computational node, which is against the previous studies that support only between 35 qubits and 49 qubits.

Keywords

Acknowledgement

This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-00014, A Technology Development of Quantum OS for Fault-tolerant Logical Qubit Computing Environment).

References

  1. B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, and A. G. White, Towards quantum chemistry on a quantum computer, Nat. Chem. 2 (2010), 106-111. https://doi.org/10.1038/nchem.483
  2. M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: an outlook, Science 339 (2013), 1169-1174. https://doi.org/10.1126/science.1231930
  3. B. P. Lanyon, C. Hempel, D. Nigg, M. Muller, R. Gerritsma, F. Zahringer, and C. F. Roos, Universal digital quantum simulation with trapped ions, Science 334 (2011), no. 6502, 57-61. https://doi.org/10.1126/science.1208001
  4. J. Casanova, A. Mezzacapo, L. Lamata, and E. Solano, Quantum simulation of interacting fermion lattice models in trapped ions, Phys. Rev. Lett. 108 (2012), 190502.
  5. D. Castelvecchi, IBM's quantum cloud computer goes commercial, Nature 543 (2017), no. 7644, 159.
  6. R. Courtland, Google aims for quantum computing supremacy, IEEE Spectr. 54 (2017), no. 6, 9-10. https://doi.org/10.1109/MSPEC.2017.7934217
  7. L. Gomes, Quantum computing: Both here and not here, IEEE Spectr. 55 (2018), no. 4, 42-47.
  8. F. Arute, K. Arya, R. Babbush, and J. M. Martinis, Quantum supremacy using a programmable superconducting processor, Nature 574 (2019), no. 7779, 505-510. https://doi.org/10.1038/s41586-019-1666-5
  9. A. Zulehner and R. Wille, Advanced simulation of quantum computations, IEEE Tran. Comput.-Aided Des. Integr. Circuits Syst. 38 (2018), no. 5, 848-859. https://doi.org/10.1109/TCAD.2018.2834427
  10. List of QC simulators grouped by programming language, 2021, Available from: https://quantiki.org/wiki/list-qc-simulators [last accessed August,
  11. I. Buluta and F. Nori, Quantum simulators, Science 326 (2009), no. 5949, 108-111. https://doi.org/10.1126/science.1177838
  12. R. P. Feynman, Simulating physics with computers, Theor. Phys. 21 (1982), 467-488. https://doi.org/10.1007/BF02650179
  13. J. Doi, H. Takahashi, R. Raymond, T. Imamichi, and H. Horii, Quantum computing simulator on a heterogenous HPC system, (Quantum computing simulator on a heterogenous HPC system, Alghero, Italy), Apr. 2019, pp. 85-93.
  14. J. Chen, F. Zhang, and C. Huang, Classical simulation of intermediate-size quantum circuits, arXiv preprint, 2018. https://doi.org/10.48550/arXiv.1805.01450
  15. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, (Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA), Nov. 1994, pp. 124-134.
  16. H. Thomas and D. S. Steiger, 0.5 petabyte simulation of a 45-qubit quantum circuit, (Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA), 2017, pp. 1-10.
  17. H. Raedt, K. Michielsen, H. B. Trieu, G. Arnold, M. Richter, and N. Ito, Massively parallel quantum computer simulator, Comput. Phys. Comm. 176 (2007), no. 2, 121-136. https://doi.org/10.1016/j.cpc.2006.08.007
  18. M. Smelyanskiy, N. P. Sawaya, and A. Aspuru-Guzik, qHiPSTER: The quantum high performance software testing environment, arXiv preprint, 2016. https://doi.org/10.48550/arXiv.1601.07195
  19. T. Jones, A. Brown, I. Bush, and S. C. Benjamin, QuEST and high performance simulation of quantum computers, Sci. Rep. 9 (2019), no. 1, 1-11. https://doi.org/10.1038/s41598-018-37186-2
  20. H. Raedt, F. Jin, D. Willsch, M. Willsch, N. Yoshioka, N. Ito, and K. Michielsen, Massively parallel quantum computer simulator, eleven years later, Comput. Phys. Comm. 237 (2019), 47-61. https://doi.org/10.1016/j.cpc.2018.11.005
  21. E. S. Fried, N. P. Sawaya, Y. Cao, I. D. Kivlichan, J. Romero, and A. Aspuru-Guzik, qTorch: The quantum tensor contraction handler, PloS one 13 (2018). https://doi.org/10.1371/journal.pone.0208510
  22. J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2 (2018). https://doi.org/10.22331/q-2018-08-06-79
  23. A. G. Fowler, A. C. Whiteside, and L. C. Hollenberg, Towards practical classical processing for the surface code, Phys. Rev. Lett. 108 (2012). https://doi.org/10.1103/PhysRevLett.108.180501
  24. Y. Tomita and K. M. Svore, Low-distance surface codes under realistic quantum noise, Phys. Rev. A 90 (2014), no. 6. https://doi.org/10.1103/PhysRevA.90.062320
  25. A. Erhard, H. P. Nautrup, M. Meth, L. Postler, R. Stricker, M. Stadler, and T. Monz, Entangling logical qubits with lattice surgery, Nature 589 (2021), no. 7841, 220-224. https://doi.org/10.1038/s41586-020-03079-6
  26. G. F. Viamontes, I. L. Markov, and J. P. Hayes, Graph-based simulation of quantum computation in the density matrix representation, Quantum Inf. Comput. II 5436 (2004), 285-296. https://doi.org/10.1117/12.542767
  27. I. L. Markov and Y. Shi, Simulating quantum computation by contracting tensor networks, SIAM J. Comput. 38 (2008), no. 3, 963-981. https://doi.org/10.1137/050644756
  28. J. Biamonte and V. Bergholm, Tensor networks in a nutshell, arXiv preprint, 2017. https://doi.org/10.48550/arXiv.1708.00006
  29. S. Boixo, S. V. Isakov, V. N. Smelyanskiy, and H. Neven, Simulation of low-depth quantum circuits as complex undirected graphical models, arXiv preprint, 2017. https://doi.org/10. 48550/arXiv.1712.05384 https://doi.org/10.48550/arXiv.1712.05384
  30. Z. Y. Chen, Q. Zhou, C. Xue, X. Yang, G. C. Guo, and G. P. Guo, 64-qubit quantum circuit simulation, Sci. Bull. 63 (2018), no. 15, 964-971. https://doi.org/10.1016/j.scib.2018.06.007
  31. S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM J. Algebraic Discrete Methods 8 (1987), no. 2, 277-284. https://doi.org/10.1137/0608024
  32. E. Amir, Approximation algorithms for treewidth, Algorithmica 56 (2010), no. 4, 448-479. https://doi.org/10.1007/s00453-008-9180-4
  33. R. Li, B. Wu, M. Ying, X. Sun, and G. Yang, Quantum supremacy circuit simulation on Sunway TaihuLight, IEEE Trans. Parallel Distri. Syst. 31 (2019), no. 4, 805-816.
  34. K. S. Jin, S. M. Lee, and Y. C. Kim, Adaptive and optimized agent placement scheme for parallel agent-based simulation, ETRI J. 44 (2021), 313-326. https://doi.org/10.4218/etrij.2020-0399
  35. Y. W. Kim, M. H. Oh, and C. Y. Park, Multi-communication layered HPL model and its application to GPU clusters, ETRI J. 43 (2021), no. 3, 524-537. https://doi.org/10.4218/etrij.2020-0393
  36. B. M. Terhal, Quantum supremacy, here we come, Nat. Phys. 14 (2018), no. 6, 530-531. https://doi.org/10.1038/s41567-018-0131-y
  37. M. Noorallahzadeh and M. Mosleh, Efficient designs of reversible latches with low quantum cost, IET Circ. Dev. Syst. 13 (2019), no. 6, 806-815. https://doi.org/10.1049/iet-cds.2018.5240
  38. A. Li and S. Krishnamoorthy, QASMBench: A low-level QASM benchmark suite for NISQ evaluation and simulation, arXiv preprint, 2020. https://doi.org/10.48550/arXiv.2005.13018
  39. L. K. Grover, A fast quantum mechanical algorithm for database search, (Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA), 1996, pp. 212-219. https://doi.org/10.1145/237814.237866
  40. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, 2010.
  41. OpenQASM 3.x Live Specification. https://qiskit.github.io/openqasm [last accessed October, 2021].