Acknowledgement
This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-00014, A Technology Development of Quantum OS for Fault-tolerant Logical Qubit Computing Environment).
References
- B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, and A. G. White, Towards quantum chemistry on a quantum computer, Nat. Chem. 2 (2010), 106-111. https://doi.org/10.1038/nchem.483
- M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: an outlook, Science 339 (2013), 1169-1174. https://doi.org/10.1126/science.1231930
- B. P. Lanyon, C. Hempel, D. Nigg, M. Muller, R. Gerritsma, F. Zahringer, and C. F. Roos, Universal digital quantum simulation with trapped ions, Science 334 (2011), no. 6502, 57-61. https://doi.org/10.1126/science.1208001
- J. Casanova, A. Mezzacapo, L. Lamata, and E. Solano, Quantum simulation of interacting fermion lattice models in trapped ions, Phys. Rev. Lett. 108 (2012), 190502.
- D. Castelvecchi, IBM's quantum cloud computer goes commercial, Nature 543 (2017), no. 7644, 159.
- R. Courtland, Google aims for quantum computing supremacy, IEEE Spectr. 54 (2017), no. 6, 9-10. https://doi.org/10.1109/MSPEC.2017.7934217
- L. Gomes, Quantum computing: Both here and not here, IEEE Spectr. 55 (2018), no. 4, 42-47.
- F. Arute, K. Arya, R. Babbush, and J. M. Martinis, Quantum supremacy using a programmable superconducting processor, Nature 574 (2019), no. 7779, 505-510. https://doi.org/10.1038/s41586-019-1666-5
- A. Zulehner and R. Wille, Advanced simulation of quantum computations, IEEE Tran. Comput.-Aided Des. Integr. Circuits Syst. 38 (2018), no. 5, 848-859. https://doi.org/10.1109/TCAD.2018.2834427
- List of QC simulators grouped by programming language, 2021, Available from: https://quantiki.org/wiki/list-qc-simulators [last accessed August,
- I. Buluta and F. Nori, Quantum simulators, Science 326 (2009), no. 5949, 108-111. https://doi.org/10.1126/science.1177838
- R. P. Feynman, Simulating physics with computers, Theor. Phys. 21 (1982), 467-488. https://doi.org/10.1007/BF02650179
- J. Doi, H. Takahashi, R. Raymond, T. Imamichi, and H. Horii, Quantum computing simulator on a heterogenous HPC system, (Quantum computing simulator on a heterogenous HPC system, Alghero, Italy), Apr. 2019, pp. 85-93.
- J. Chen, F. Zhang, and C. Huang, Classical simulation of intermediate-size quantum circuits, arXiv preprint, 2018. https://doi.org/10.48550/arXiv.1805.01450
- P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, (Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA), Nov. 1994, pp. 124-134.
- H. Thomas and D. S. Steiger, 0.5 petabyte simulation of a 45-qubit quantum circuit, (Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA), 2017, pp. 1-10.
- H. Raedt, K. Michielsen, H. B. Trieu, G. Arnold, M. Richter, and N. Ito, Massively parallel quantum computer simulator, Comput. Phys. Comm. 176 (2007), no. 2, 121-136. https://doi.org/10.1016/j.cpc.2006.08.007
- M. Smelyanskiy, N. P. Sawaya, and A. Aspuru-Guzik, qHiPSTER: The quantum high performance software testing environment, arXiv preprint, 2016. https://doi.org/10.48550/arXiv.1601.07195
- T. Jones, A. Brown, I. Bush, and S. C. Benjamin, QuEST and high performance simulation of quantum computers, Sci. Rep. 9 (2019), no. 1, 1-11. https://doi.org/10.1038/s41598-018-37186-2
- H. Raedt, F. Jin, D. Willsch, M. Willsch, N. Yoshioka, N. Ito, and K. Michielsen, Massively parallel quantum computer simulator, eleven years later, Comput. Phys. Comm. 237 (2019), 47-61. https://doi.org/10.1016/j.cpc.2018.11.005
- E. S. Fried, N. P. Sawaya, Y. Cao, I. D. Kivlichan, J. Romero, and A. Aspuru-Guzik, qTorch: The quantum tensor contraction handler, PloS one 13 (2018). https://doi.org/10.1371/journal.pone.0208510
- J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2 (2018). https://doi.org/10.22331/q-2018-08-06-79
- A. G. Fowler, A. C. Whiteside, and L. C. Hollenberg, Towards practical classical processing for the surface code, Phys. Rev. Lett. 108 (2012). https://doi.org/10.1103/PhysRevLett.108.180501
- Y. Tomita and K. M. Svore, Low-distance surface codes under realistic quantum noise, Phys. Rev. A 90 (2014), no. 6. https://doi.org/10.1103/PhysRevA.90.062320
- A. Erhard, H. P. Nautrup, M. Meth, L. Postler, R. Stricker, M. Stadler, and T. Monz, Entangling logical qubits with lattice surgery, Nature 589 (2021), no. 7841, 220-224. https://doi.org/10.1038/s41586-020-03079-6
- G. F. Viamontes, I. L. Markov, and J. P. Hayes, Graph-based simulation of quantum computation in the density matrix representation, Quantum Inf. Comput. II 5436 (2004), 285-296. https://doi.org/10.1117/12.542767
- I. L. Markov and Y. Shi, Simulating quantum computation by contracting tensor networks, SIAM J. Comput. 38 (2008), no. 3, 963-981. https://doi.org/10.1137/050644756
- J. Biamonte and V. Bergholm, Tensor networks in a nutshell, arXiv preprint, 2017. https://doi.org/10.48550/arXiv.1708.00006
- S. Boixo, S. V. Isakov, V. N. Smelyanskiy, and H. Neven, Simulation of low-depth quantum circuits as complex undirected graphical models, arXiv preprint, 2017. https://doi.org/10. 48550/arXiv.1712.05384 https://doi.org/10.48550/arXiv.1712.05384
- Z. Y. Chen, Q. Zhou, C. Xue, X. Yang, G. C. Guo, and G. P. Guo, 64-qubit quantum circuit simulation, Sci. Bull. 63 (2018), no. 15, 964-971. https://doi.org/10.1016/j.scib.2018.06.007
- S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM J. Algebraic Discrete Methods 8 (1987), no. 2, 277-284. https://doi.org/10.1137/0608024
- E. Amir, Approximation algorithms for treewidth, Algorithmica 56 (2010), no. 4, 448-479. https://doi.org/10.1007/s00453-008-9180-4
- R. Li, B. Wu, M. Ying, X. Sun, and G. Yang, Quantum supremacy circuit simulation on Sunway TaihuLight, IEEE Trans. Parallel Distri. Syst. 31 (2019), no. 4, 805-816.
- K. S. Jin, S. M. Lee, and Y. C. Kim, Adaptive and optimized agent placement scheme for parallel agent-based simulation, ETRI J. 44 (2021), 313-326. https://doi.org/10.4218/etrij.2020-0399
- Y. W. Kim, M. H. Oh, and C. Y. Park, Multi-communication layered HPL model and its application to GPU clusters, ETRI J. 43 (2021), no. 3, 524-537. https://doi.org/10.4218/etrij.2020-0393
- B. M. Terhal, Quantum supremacy, here we come, Nat. Phys. 14 (2018), no. 6, 530-531. https://doi.org/10.1038/s41567-018-0131-y
- M. Noorallahzadeh and M. Mosleh, Efficient designs of reversible latches with low quantum cost, IET Circ. Dev. Syst. 13 (2019), no. 6, 806-815. https://doi.org/10.1049/iet-cds.2018.5240
- A. Li and S. Krishnamoorthy, QASMBench: A low-level QASM benchmark suite for NISQ evaluation and simulation, arXiv preprint, 2020. https://doi.org/10.48550/arXiv.2005.13018
- L. K. Grover, A fast quantum mechanical algorithm for database search, (Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA), 1996, pp. 212-219. https://doi.org/10.1145/237814.237866
- M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, 2010.
- OpenQASM 3.x Live Specification. https://qiskit.github.io/openqasm [last accessed October, 2021].