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Abstract

d

This paper proposes an analysis method of Petri nets(PNs) using the relational
algebra(RA). More specifically, we represent PNs in relations of the relational model.
Based on such representation, we  first develop an algorithm  for  generating
reachability trees of PNs. We then develop algorithms for analyzing propertics of
PNs, such as boundedness, conservation, coverability, reachability, and liveness.

The advantage of this approach is as follows: First, the algorithms represented by
RA can be easily converted to a query language such as SQL of the widely used,
systems(DBMSs).

alleviate the problem of state space explosion because relational DBMSs can handle

commerical relational database management Sccond, we <an

large amounts of data efficiently. Finally, we can use the DBMS's query language

to interpret the Petri nets and make simulation.

1. Introduction major weakness is that modeled Petri nets tend to
become too large for analysis even for a modest-
Petri nets are a powerful tool for describing and size system, For example, in recent years consid-

studyving systems that are characterized as being erable effort has been given to develop models for

concurrent, asvnchronous, distributed, parallel, andjor
nondeterministic. A strength of Petri pets is their
for analysis of properties  and

supp()rt many

problems associated with concurrent systems. But a
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specification and validation of protocols. Petri nets,

which have been designed for the purpose of

communications berween finite-state machines, seem

a quite natural tool for modeling the promcols.[l] [2]
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[3] A difficult practical and theoretical issue in the
design of protocols is protocol verification. Keachability
analvsis can be used in the protocol design phasc
to explore the global states of the svstem ro derect
undesirable behaviors, e.g., unboundedness, dealocks
and unrcachable states. While reachability analysis
has been used for formal verification of protocols
of low complexity, the practical use of reachability
analvsis for more complex interactions has been
constrained by the problem of state space explosion,
That is, as the network of communicating finitc-
statc machines increascs in complexity, the total
number of possible global states grows rapidly. This
problem can be alleviated by the relational approach,
because relational DBMSs can handle large amounts
of data cfficiently, This approach has been used 1n.

(41 [5]

Specitically, we deseribe an implementation  of

rcachability  analysis  for systems(which can  be
protocols) modeled by Petri nets, In this approach,
systems arc represented as set of relations, Using
these relations, the reachable global states can be
determined by an interative sequence of operations
of RA that eventually generates a reachability trec
for the system, This final reachability tree can be
examined by specific queries, again deseribed in
terms of RA to detect properties ot Petri nets,

This paper is organized as follows. In the nexst

section we introduce the notation and concept of

the relational ;1lgchm(R/\), In section 3 we apply
RA to Petri net and formulate the several properties
ot Petrl nets in terms of operators  of  RA,

Conclusions are drawn in the last section,

2. The Relational Model and Algebra

In this section we briefly introduce the relational

model and algebra,

2.1 The Relational Model

The mathematical concept underlving the rela-

tional  model is  the  sef-theoretical  velation(s-
relation), which is a subser of the Cartesian product
of a list of sets. Given sets S, S, ==+, Sp a s-
relation R is a subest of the Cartesian product S
X 5;X - Sn. S-relation R s said to be of of degree
n. Lach of the sets 5, S, Sn on which one
or more s-relations are defined is called a domain.

A rclation R in the relational model[6] 177 is
very similar to its  counterpart in marhcematics,
Relations can perceived as rables, where cach row
is a tuple and cach column has a distinct name
called an aftribute, N relation R oon A ={4, 4,
Ant will be denoted by R°A L Tet t be a ruple in
R'A . The components of t corresponding o the
set of arrributes NS is denoted by £ | 1 ay is
a constant from the domain of Ay, then{a,, a., -+,

any is a constant tuple over A; Ay Ap
2.2 Operations of Relational Algebra

There are five fundamental operations that serve
to define relational algebra. These operations are:
wnion, difference, Cartesian product, project. and

select,

(1) Union U

S, denoted R1JS, is smallest set containing all ruples

The union of relations R and

of R and all ruples of S,
Rils=4 1t e R v t & K
(2) Difference — The difference of relations

R and S, denoted R—S, the sct conraining rhe

tuples of K that are not in S,
R—S={t | tERAIES)

(3) Cartesian  Product X : The Cartesian
product of K and 5 is the set of all ordered pairs

N

{r. s such thar the first element of ordered pair,

v, is from R and second clement of the ordered
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pair, s, 18 from S,

RXS={r srire&ERAseS!

{(4) Projection m Projecrion chooses a subset

of the columns, Ler R be a relation on a set of

attributes =400y A
A The projecnion xRy 1s obtained by dropping
columns  with  attributes not in the ser N and
removing duplicate tuples i what remams,

xRy = XNt & R

In general, we can extend X as a set of the
airthmeric expression of clements of A,

(5) Selection o et ¥ be a formula which is
one of the tollowing tvpes!

L ¢.

2o o= oagh where,

(aj alb) are constants, atrribiite names, or
component numbers! component 11§ repre

sented by i,

(bl g & ¢, = o =< = 2

» n

3. I and F, are two tormulas and F=F A
or F=FKvE, or F=—F,

Then apR) s the set of tuples ¢ in K such that

when we substirute the ith component of { for an

occurrences of $¢ in the formula F tor all ¢ and

substitute the corresponding comporents of ¢ for

atrribute names in the tormuala £, the formulas ©
hecomes fruc,
o Ri=1 I AMER)
fn addition 1o the five tundamental operations,
there are some other useful operations on relations
that can be defined in rerms of the five tundamental
operations above, namely, tnfersection. theta jotn
and naturae join
{1 ¢ 'The

N o

relations R and S, denoted KMYS, is rhe smallest

{(6)  Intersection mtersection  of
set containing all tuples that are members of both
R oand S,

RS = RyR-S;

(7) Theta join = v The theta join of R and

At and X be subser of

1s shorthand

’

S on columns 7 and 7

writtens N h -
for @sesoo/RXN) 06 is of degree v, g i an
arithmerne comparison operator(== {, and so on),

If\) ,L_,\ N =

(8) Natural Jorn

asesir, (R XS Roas of degree v
Let B oand N be relations
on a set of atrributes A =g AL s ARl and X
Yo oand 2 be o osubser of A The natural join
combines  two  relatnons on o all their conymon
atrributes. The natural join, written R VY 0087V
is a relation £°XYZ of all wples ¢ over XYZ such
thar there are tuples FXY&ER and Y2 &5
RXY o SIYZ ={HEXNY e RAUYZ

3. Modeling of Petri Nets using RA

Petri ners are a promusing tool for describing and
studving  systems that are charcterized  as being
concurrent, asyvnchronous, distributed, parallel, andjor
nondeterministic, A strengrh of Petri nets is heir
support  for anulvsis  of many  properties and
problems associated with concurrent svstems, But a
major weakness is that modoled Perrt nets tend to
become oo large for analvsis, even for a modest
slze system,

This problem can be alleviated by the relational
approach, because relatonal DBMSs can handle

large amounrs of data diticiently, Thar is | f we
represent Perrr nets as relavons, their reachabiliry
ee can be obruned as relations by wsing RA

operators. Furthermore,  we  can draw  several
propertics of Perrt aers trom the reachability tree

in forms ot relations,
3.1 Definition and Properties of Petri Nets
In this scction, we present basie defininons ot

Petri nets and explain behavioral propertics of Petr

nets, A tormal definition of Petri ner tollows.
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Definition 3.1 .1 Petri net, PN, is a frve-tuple
structure, where PN=(P, T 1. 0. My
1. P is finite set of Place
2. T is a finite set of tramsitions. The sct of
places and the set of transitions ave disjoind.
POT= g
3. [T = P s the input function, a mapping
from transition {o hags of places.
4. 2T— P2 s the output function, a mapping
from transition to hags of places.
Mo 0 P—>X is the initial marking function, a
of  places P do the

(T

mapping  from  set
nonnegdative iutegers ™|
Note that the inputs and ourpurs of a transition
arc bags of places. The multiplicity ot an inpur
place p for a transition 7 is the number of
occurrences of the place in input bag of a transition,
#(p. T(t)). Similarly, the multiplicity of an output

place p for transition ¢ is #(p. Ol
definition 3.2 L&t PN=(F, 1. I O
Petri net.

1. A4 function My . P—N, wheve k& X is called
a marking of PN, My(P) represents the number of
tokens in the place p.

2. A transition t=T s enabled af marking M,
ff ﬁ(p, T(t)) < Mk(p), v p&EP. An enabled
transition wmav or may RHol frre.

3. If tE€T is a transition which is enabled at

My) be a

My then t mav fire, yielding a new wmarking My
given by the equation:
My(p) = My(p)~3(p. 1(0)) +#(p. Ot). ¥p=P
4. Firing t changes the marking My inio the
new marking My we denote this fact by J/[kj%
My

5. The set of all possible markings reachable

from My in PN, denoted R(My), is the smallest
set of markings of PN such that:

(a) My&ER(M)

() if M & R(My) and My>My for some i

= T then MyeR(M,y).
There are two types of properties studied with

a  Petri-net model:  bchavioral and  srructural
propertics, In this paper, we discuss only behavioral
properties because structural properties depend on
the topological structures of Perri nets and can be
well characterized in terms of the incidence marrix
and irs associated  homogeneous  equations  or
mnequalities,

Manv behavioral properties have been studied in
nets[ 81195 [10] but  we

boundedness,

Pern consider only

conservation,  liveness, reachability,

and coverability, Boundedness can be interprered as
a stable facror in ‘the svstem, For example, if the
modeled Petri ner s unbounded, then this mayv
indicate the occurrence of overflow of some butfers
in the system, Conservation is an important property
in that if a Petri net models resource allocation
svsrems, then tokens, which represent resources, are
ncither created nor destroved. Tiveness has an
important meaning tor many systems and 1s closely
related to the complete absence of deadiocks in
concurrent systems, Reachability is a fundamental
basis for studving the dvnamic properties of any
svstem. Coverability is closely related to L1-liveness.
[8] T.er My be the minimum marking needed a
rransition /. Then f is dead if and only it My is
not coverable, That is, ¢ is Ll-live if and only if

My is coverable.

Definition 3.3
1. Boundedness:
fa) p<P s n-bounded iff v M &R(Mo), My(p)
=n;
(h) PN is n-Bounded iff v p = P, p is n-bounded.
(¢) PN is safe iff PN is 1-bounded.
(d) PN is bounded iff3 n&N, PN is n-bounded.

2. Conservation:

(aj PN is strictly conservative iffy My &R(M,),
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Sper Myl pl=Zpsr Mo(p);
(bJFPN is conservative wiih respect (o a weirghting
function W o P=sNN

(p) - Midp) == W(p) - Molp)

3. Liveness:

faj te=T 4y live iff v Mye=ReMy 3 Myes=RiM,
t s enabled at My':

(h) PN /s live off Vie=T, f as live

fe; PN s deadlock free /ff v M s RiMy 3t =
1. tis enabled My,

4. Reachability Problem: iven o Petri net PN

and a marking M, s M e=RiMy?

5. Coverability Problem: friven o petri net PN
and a wmarking My, s there a reachable marking
MyeRiMo such that Mg =M,-

ol
5 -

Pz

(Figure 1) A simple Petri net /’)\,

3.2 Tabular Representation of Petri nets

In this section we define relations to represent
Petri nets,

Schema definition .

iy MyeERMe, Zpse W

L. Pipid’ is a table to store place P of PN,
2. 1 Hd T s a ro ostore rransitions T of PN
3.0 td, pid. cnd’ is a table where cach tuple
corresponds to an wmput are of hdieET

Ltid, pad, ont’ = liiel ACE ST AL pid & P
Acut=F(prd, litid)}
4 0td pid. cat: s oa wble where cach taple o
corresponds 1o an outpur are of o fid T
5. M pnd, prd, enl s a table 1o store all marking
M= ROMG ). A marking My can be retrieved by
Tpial Omia =kl M)

My = 7ol Omig “kf M)

6, Rimind, pid mad ds g falle to store e

veachability tree of PN,

The table defined ahbove tor Figure 1 are shown
in Figure 2,

p - \ /wJ 7 \ A ]
b Lo
P !
Lop t
[= ;u‘i f,’l;/ /mzt ' %() —47 //;:f -
J I f 1 f
e e ]
‘ L, P 1 : I b
i e
Y b 3
o b 1)
| o by 0

(Figure 2) The relation representation of the simple
Petri net PN,
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3.3 Algorithm for Generating the Reachability
Tree

The reachability tree represents the reachabiliey
set of a Petri net. It is a useful tool for solving
behavioral properties. For the reachability tree to
be finite, the special symbol, @, are necessary for
the construction of the rcachability tree[8]. The
rules for @ are!:

n{w for all n&EN:

W+ W=w+n=w—n=w for all n&EX .

w< w,

Now, we develop the algorithm for generating

the reachability tree of a Petri net based on RA.

1. Enabled-transition operation ET(My) © Given
PN and My, this operation, denoted ET(My),
vields a set of enabled transitions in the marking
My. It i1s defined by the following procedure:

stepl. MInput .= 0ug pid ent(Io= o= Mipa Al em

ZMeeny My),

step2. UMInput = [—MInpui,

step3. NI Trans = mygUMInput),

stepd. [ T(My) = T—NETrans,

2. Next-state operation NS(My.1): This opera-
ton NS(M.t) yields the new marking(statc) which
results from firing the transition ¢ in the marking
M. Since ¢ can fire onlv if it is enabled, NS(My,
£)=A0y of ¢ is not enabled in marking M. If £ 1s
enabled, then NS(My #)=My, where My is the
marking which results from removing tokens from
the inputs of / and adding tokens 1o the outpuots

of {. Tt is defined by the following procedure:

stepl. Pre | = moacenfoua=uli.

step2. Fos ' = Towent!Tua= ),

siep3. Tﬂlf)l = 7o = Myepigent = A‘Ik-cnl(JIkL My pia =
Pre um.[’?’(’),‘

siep4. T”ZPZ D= o™ Miepig em = Micent— Pre cm(;‘ukx =

My pia = 1’re-pm_p1'{’) N

stepS. My = (M —Tmpl) 1) Tmp2;

step6. Tmpl .
Poswal?0s);

step7. Tmp2

= mpe= M pig cnt = M cm(;‘]k/lr“ﬂ My pra=

S g = Mo ene = My em T Posenf My
M g = Fos el 08 ),
step8. NS(M. 1) = (My—Tmpl)|J)Tmp2;

3. Parent-marking operation PM(R, My ). Given
the reachability tree R and any marking My which
15 a node of R, this operation vields all the parcnt
markings of My It is defined by the following
procedure:

stepl. DParent = [k New

step2. while New=¢ do

(*Without loss of generality we assume New' is

o § e
- 'lkf.

queue *)
l'I:DEQITI'ZI_,‘*IZ(]\'L‘ZU)Z(*Extract front element
from queuc *)
if 7==() then
for each j&mmiaf omig’ =1(R)/do
if j& Parent then
Parent: = Pavent\ )},
New:=Newl ),
end if
end for
end if

end while

stepd. PM(R, My = Parent;

4. Update-marking operation UMMy, My):
Given My, which s immediately reachable from
My, it there exisis a path from the root to My
containing a marking Mj such that

Tent! Opia = pf M) = Tene( Opig =p( M) for all e
g

then replace myient/(where mye Wy and my’
Pidi=p) by @ wherever Ton( Opia = p(My) < Tem
(Opida =p(My')).

stepl. Twip:-= ¢

stepl. Pmid: =PM(R, My),



2| L+ 0|83 HEZ] HESl RYal 43

step3. for each /=Pwmid do

if Tone/ dprg = p( My} <= e/ Opta = ol My')) for all

pe P then
for each p=/’ do

if el Opia = p! M) Tenil Opia = of My)jthen

Tmp:=Tmpl) Tpig cae = & M),
else
Twmp:=Tmp| | wpig et/ My}
end if
end for
My =Tmp
end if
end for

I

5. Reachability-tree  operation RT!

Using

above defined operations, we could construct the

the relation R is inidally empry,

stepl. New. ={olj =0

step2. while New =+ ¢ do

(* Without loss of generality we assume New
15 queue *)

= DEQUEU R New ) 1 (Flixtract front element
from queuc™®)

if Smia = i Tmia/N)) = ¢ then

for each &< T(M,) do

UMMM

if M=M, where k& mpe/M) then
K= R R

else
joEg ]
Meo=MU 4 om e MY,

the

reachability rree of a Petri net as follows. Note thar Re=RUIG LD

T
Ty o 0
Lo 1 0
ol 2 0 |
2 0 1 '
0 3 0
1 1 j
0 ) | ,1
i 0 ?
0y 1
0 0 3
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A = i’ﬂ"}"Z;;*wﬂ;l’(fir ont Wﬁ‘*} R = ‘ﬂ )7;1‘111 tid mid’ i
C b 5 0 L L l
L0 b 0| 1 /1 2 ‘
i 0 by 0 \r 1 2 3 ‘
i 1 b 2 : h 1
b1 b, 1 Z fy 3]
! 1 Ps 0 3 h 5
| 2 1 1 ! 6
| ‘ f: 5 5 f 6
Lz 0 Co s
J 3 b 2 b f &
3 P 0 7 b LI
L3 bs 1 8 fr 9
‘ 1 h 0 | 8 Iy 0
4 Pa 3
4 Ps 0
5 b 1
5 be I
5 ps .
6 h 0
6 ps 2
6 Ps 1
7 i 1
7 P 0
7 bs 2
3 h 0
8 Ps 1
8 ps 2
9 h 0
9 P 0
9 Ds 3
(Figure 4) The marking table )/ and reachability table X of I\, J
New: = New|J {j}, For example, we can obtain the reachability tree
end if of Figure 3 by applying RT operation to the Petri
end for net of Figure 1. The contents of M and R is shown
end if Figure 4.

end while
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3.4 Algorithm for Analysis of Petri Nets

The reachability tree 1s a very powertul tool for
analysis of behavioral properties, But, reachahility
and liveness, in general, cannot be solved by usmyg
the reachability tree because of the existence of the
@ symbol, The reachability rrec doces not necessarily
contain c¢nough information to solve reachabilivy or
liveness. However, 1f the modeled svstem satisfies
boundedness then all of behavioral properties can
be determined by using the reachabilitv tree because
it contains all possible markings. Forrunarely, most
realistic problems should be bounded. Thus, we
assume that the reachability tree 15 bounded for

properries such as reachability and liveness,

1. Safeness. Safeness is a special case of the more
general boundedness property. This property re-
quires that each place p&F should not have more
rhan one token for each marking My, =M. To show
safeness we first obtain the set of unsate places, It
is casy to show rthat the set of unsafc places is
given by

Unsafe-Place := ool ocad1(M)).

Next, we justify the safeness with Unsafe-Place.
That is, if Unsafe-place is empty, thea the modeled
system is safe,

stepl. Unsafe-Place: = roal Geny ) 1(M)),

step2. if U'nsafe-Place=r ¢ then

return unsafe;
end if
step3. return safe:
In the reachability tree of Figure 3, there arc

three unsafe places given below!

l"n.\‘afg,plmy - I /”d

2. Bowndedness: This property requires that cach
place pe=f? should not have more than £ tokens
for cach marking M= W. In other words, 1t the
modeled svstermn is bounded, then & s the maximum
number among the number of tokens of all places
tor all markings.

stepl. [ "nhomnded-Place: = xoaf oem = wf M});

step2. if {'nhounided-lace= Othen

return unbounded
end if

step3. &= maximen (ML

stepd. return /& bounded:

In the reachability tree of Figure 3, PNy s 3-

bounded,

3. Conservation: A petri net is stricily conservative
if 1t does not lose or gamn tokens but merely moves
them around. This property can casily be tested by
the tollowmg  procedure. Frest,  boundedness s
checked, becavse the necessary condition of con-
servarion 1s  boundedness. Nexr, it the modeled
svstem is bounded, then we check whether the sum
of the number of tokens of cach marking Mye=

s equal or not,

stepl. if Unbounded-Place= gthen
return unconservarive,
end if
step3. Rmid: = mpq( M)
stepd. sunig = 2 nenf ama = o M)) 1
stepS. for each i<=Kmid do
sumy = 2w oma=1(M)) 1
if s, sum; them
return unconscrvative.
end if
end for
step4. return conservative;
We can also test conservation hy considering the
weighting factor given to each place. Because this
similar  to  the above

is  wvery procedure, the
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procedure is not enumerated here. In the reacha-

bility trec of Figure 3, PN is strictly conscrvative,

4. Converabrlity: The coverability problem is that
given a Petri net PN with initial marking 3, and
a marking M is there a rcachable marking M/je&
M such that e (ona=p( M)} = menfoma=p(My)), for
all p&p?

stepl. Rwmid: = rma(M),

step2. for each (SRmid do

if7ene (Opig=plM') ) S Tenyl Gpig=(My) for
all p&P then
return coverable:
end if
end for
step4. rcrurn uncoverable!
We can know that a marking M;=(1, 1, 0}
is coverable in rthe reachability tree Figure 1
because My is covered by M, orM,.
5,T(L’(I(h(lbz'[z'i;\' . The reachability problem is that
given a Petri net PN with initial marking M,
and a marking M; 18 MjeM?
stepl. Rwid: = xma(M);
step2. for each /=Rmid do
if My=M, then
return rcachable.
end if
end for

step4. return unrcachable;

We can know that a marking My=(0,1,2) is
reachable in the reachability tree of Figure 1 because
M; is Mg,

6. Liveness . We say that a Petri net is in
deadlock if no transition in the net is enabled. These
deadlock markings correspond to the terminal nodes
of the reachability tree.

Deadlock: = mma(R) — mma(K)

We assume that a Petri net is live if it doesn't

have any deadlock states. In the reachabiliry rree of
Figure 3, there is one deadlock marking(state)
given below:

R

Deadlock = ‘ mid
9
5

4. Conclusions

We have shown the relarional methodology for
the analvsis of Perri nets based on RA representa-
ton and manipulation. Specifically, we have des-
cribed an implementation of reachability analysis for
systems modeled by Petri nets, In this approach,
systems are represented as a ser of relations, Using
these  relations,  the  reachable  global  states  are
determined by an iterative sequence of operations
ot RA that evenrually generate a reachability tree
for the svstem. This final reachability rree can be
examined by specific queries, again, described in
terms of RA, to verify properties of Perri nets,
Because the several properties of Petri nets have
been formulated in terms of RA's operators,  all
procedure of analysis of Petrl nets can easily transfer
to commercial relational DBMSs, In conclusion, we
believe that RA is a useful tool for mainpulating

data,
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