Lee, Sun-A;Yoo, So Young;Kay, Kee-Sung;Kook, Joong-Ki
Journal of Microbiology
/
제42권3호
/
pp.239-242
/
2004
This study examined the detection rate of the hepatitis B virus (HBV) and Mycobacterium tuberculosis (Mtb) in serum and saliva samples, respectively, from 120 dental patients who were unaware if they have or had either hepatitis or tuberculosis. The frequencies of HBsAg and anti-HBs were determined using an immunochromatic assay. Mtb positivity was determined by the PCR method. Of the 120 patients, 7 (5.8%) were HBV positive and 30 (25.0%) were Mtb positive. This highlights the fact that dental health care workers (DHCWs) can be exposed to the risk of infection from blood- or saliva-borne pathogens as a consequence of their work. Therefore, it is very important to prevent cross infection between patients and dental personnel. Accordingly, laboratory tests prior to surgical treatment are needed to determine the infectious state of dental patients in order to prevent the transmission of infectious diseases in dental clinics.
In this study, we deployed the cable tunnel inspection and monitoring system by wireless sensor network. It is shown that the wireless sensor network which is composed of sensor, wireless communication module, and gateway can be applied to cable tunnel monitoring system. Sensors considered herein are flame detection sensor, flood detection sensor, intruder detection sensor, and temperature sensor, etc. It is also found that the wireless sensor network can deliver sensing data reliably by wireless sensing technology. The gateway system that can transmit sensed data to server by CDMA is developed. Monitoring system is constructed by web service technology, and it is observed that this system can monitor the present state of tunnel without difficulties. The system provides an alternative to inspect and monitor the tunnel efficiently where the conventional wired system is infeasible.
In this study, we deployed the cable tunnel inspection and monitoring system by wireless sensor network. It is shown that the wireless sensor network which is composed of sensor, wireless communication module, and gateway can be applied to cable tunnel monitoring system. Sensors considered herein are flame detection sensor, flood detection sensor, intruder detection sensor, and temperature sensor, etc. It is also found that the wireless sensor network can deliver sensing data reliably by wireless sensing technology. The gateway system that can transmit sensed data to server by CDMA is developed. Monitoring system is constructed by web service technology, and it is observed that this system can monitor the present state of tunnel without difficulties. The system provides an alternative to inspecting and monitoring the tunnel efficiently where the conventional wired system is infeasible.
Taking the superficial temperature increment as the major fatigue damage indicator, the infrared thermography was used to predict fatigue parameters (fatigue strength and S-N curve) of welded joints subjected to fatigue loading with a high mean stress, showing good predictions. The fatigue damage status, related to safety evaluation, was tightly correlated with the temperature field evolution of the hot-spot zone on the specimen surface. An energetic damage model, based on the energy accumulation, was developed to evaluate the residual fatigue life of the welded specimens undergoing cyclic loading, and a good agreement was presented. It is concluded that the infrared thermography can not only well predict the fatigue behavior of welded joints, but also can play an important role in health detection of structures subjected to mechanical loading.
Background: The objective of this study was to measure the antibody content of NuTu-19 ovarian cancer cells in serum samples using a quartz crystal microbalance (QCM) immunosensor. Materials and Methods: NuTu-19 cells were first cultured onto the electrode surfaces of crystals in Dulbecco's modified Eagle medium, and then specified amounts of immunized serum samples of immunized rabbit were also added. The change in mass caused by specific adsorbtion of antibodies of NuTu-19 to the surfaces of the crystals was detected. Results: The change in resonance frequency of crystals caused by immobilization of NuTu-19 cells was from 83 to 429Hz. The antibody content of NuTu-19 detected was 341ng/ul. The frequency shifts were linearly dependent on the amount of antibody mass in the range of 69 to 340ng. The positive detection rate and the negative detection rate were 80% and 100%, respectively. Conclusion: This immunoassay provides a viable alternative to other early ovarian cancer detection methods and is particularly suited for health screening of the general population.
In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권2호
/
pp.348-369
/
2024
With the advancement of Industry 4.0 and Industrial Internet of Things (IIoT), manufacturing increasingly seeks automation and intelligence. Temperature and vibration monitoring are essential for machinery health. Traditional abnormal state detection methodologies often overlook the intricate frequency characteristics inherent in vibration time series and are susceptible to erroneously reconstructing temperature abnormalities due to the highly similar waveforms. To address these limitations, we introduce synergistic, end-to-end, unsupervised Frequency-Time Domain Memory-Enhanced Autoencoders (FTD-MAE) capable of identifying abnormalities in both temperature and vibration datasets. This model is adept at accommodating time series with variable frequency complexities and mitigates the risk of overgeneralization. Initially, the frequency domain encoder processes the spectrogram generated through Short-Time Fourier Transform (STFT), while the time domain encoder interprets the raw time series. This results in two disparate sets of latent representations. Subsequently, these are subjected to a memory mechanism and a limiting function, which numerically constrain each memory term. These processed terms are then amalgamated to create two unified, novel representations that the decoder leverages to produce reconstructed samples. Furthermore, the model employs Spectral Entropy to dynamically assess the frequency complexity of the time series, which, in turn, calibrates the weightage attributed to the loss functions of the individual branches, thereby generating definitive abnormal scores. Through extensive experiments, FTD-MAE achieved an average ACC and F1 of 0.9826 and 0.9808 on the CMHS and CWRU datasets, respectively. Compared to the best representative model, the ACC increased by 0.2114 and the F1 by 0.1876.
Anitawati Mohd Lokman;Muhammad Nur Aiman Rosmin;Saidatul Rahah Hamidi;Surya Sumarni Hussein;Shuhaida Mohamed Shuhidan
International Journal of Computer Science & Network Security
/
제24권9호
/
pp.77-84
/
2024
Emotional health is important for overall health, and those who are experiencing difficulties should seek professional help. However, the social stigma associated with emotional health, as well as the influence of cultural beliefs, prevent many people from seeking help. This makes early detection difficult, which is critical for such health issues. It would be extremely beneficial if they could assess their emotional state and express their thoughts without prejudices. On the market, there are emotional health apps. However, there was little to no evidence-based information on their quality. Hence, this study was conducted in order to provide evidence-based quality in emotional health mobile apps. Eleven functionality task scenarios were used to assess functional quality, while a System Usability Scale test (n=20) was used to assess usability, customer acceptability, learnability, and satisfaction. The findings show that the app for emotional health management is highly efficient and effective, with a high level of user satisfaction. This contributes to the creation of an app that will be useful and practical for people experiencing early-stage emotional health issues, as well as related stakeholders, in order to manage early-stage emotional health issues.
Purpose: The purpose of this study is to propose directions for the development of Occupational Health Nursing Intervention by identifying the current status and quality of Occupational Health Nursing Intervention Research in domestic industries. Methods: Between 2000 and August of 2018, total of 1,181 Occupational Health Nursing related published references were searched using 4 domestic databases, and of the total, 29 final theses that suited the requirements were analysed In this research, the quality assessment of literature that were selected as suitable was conducted using a tool for assessing the biasing risk of non-randomized studies, RoBANS(Risk of Biasing Assessment Tool for Non-randomized Study). Results: For all research, nonequivalent control group pre-posttest design was the most used as quasi-experimental designs. The effectiveness of intervention was found both in terms of physical and psychological aspects, and the result of the risk of biasing assessment showed a high risk levels in both "confounding variables" and "detection bias". Conclusion: Occupational Health Nursing Intervention have been steadily making improvements in terms of both quality and quantity, and as for more effective intervention developments that improves the physical and mental health of the workers, supplementation in strict research design and in ethical aspects deems necessary.
Purpose: The study attempted to improve the health promotion behavior of university students by identifying the factors that affect health promotion behavior and by checking depression, anxiety, and stress levels of university students after the COVID-19 pandemic. Methods: We collected data using a structured questionnaire targeting 170 university students in C-province between December 1 and December 31, 2022. Results: Health promotion behavior had a significantly negative correlation with Depression (r=-.361, p<.001), Anxiety (r=-.191, p=.012), and Stress (r=-.301, p<.001), respectively. The influencing factors of health promotion behavior are gender (r=0.184, p<.001) and depression (r=-0.303, p<.001); the explanatory power is accounted for 15%. Conclusion: A practical method with counseling programs and mental health support services for early detection of risk groups by periodically monitoring the depression state of university students requires practicing health promotion behavior. Therefore, active support and attention should be provided to manage the mental health of university students.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.