• 제목/요약/키워드: State of equations

검색결과 1,480건 처리시간 0.033초

직교함수를 이용한 시스템의 제어 (System Control Using Orthogonal Function)

  • 안두수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.468-470
    • /
    • 1998
  • We have studied system identification model reduction method, optimal control by orthogonal functions. This paper presents the easy method that solves algebra equations instead of differential equations using Walsh, Haar, Block pulse function of orthogonal functions in state equation. The proposed algorithm is verified through some examples.

  • PDF

ALGORITHMS FOR SOLVING MATRIX POLYNOMIAL EQUATIONS OF SPECIAL FORM

  • Dulov, E.V.
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.41-60
    • /
    • 2000
  • In this paper we consider a series of algorithms for calculating radicals of matrix polynomial equations. A particular aspect of this problem arise in author's work. concerning parameter identification of linear dynamic stochastic system. Special attention is given of searching the solution of an equation in a neighbourhood of some initial approximation. The offered approaches and algorithms allow us to receive fast and quite exact solution. We give some recommendations for application of given algorithms.

INFINITE HORIZON OPTIMAL CONTROL PROBLEMS OF BACKWARD STOCHASTIC DELAY DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Liang, Hong;Zhou, Jianjun
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.311-330
    • /
    • 2020
  • This paper investigates infinite horizon optimal control problems driven by a class of backward stochastic delay differential equations in Hilbert spaces. We first obtain a prior estimate for the solutions of state equations, by which the existence and uniqueness results are proved. Meanwhile, necessary and sufficient conditions for optimal control problems on an infinite horizon are derived by introducing time-advanced stochastic differential equations as adjoint equations. Finally, the theoretical results are applied to a linear-quadratic control problem.

OPTIMAL CONTROL PROBLEMS FOR SEMILINEAR EVOLUTION EQUATIONS

  • Jeong, Jin-Mun;Kim, Jin-Ran;Roh, Hyun-Hee
    • 대한수학회지
    • /
    • 제45권3호
    • /
    • pp.757-769
    • /
    • 2008
  • This paper deals with the existence of optimal controls and maximal principles for semilinear evolution equations with the nonlinear term satisfying Lipschitz continuity. We also present the necessary conditions of optimality which are described by the adjoint state corresponding to the linear equations without a condition of differentiability for nonlinear term.

A LOCAL-GLOBAL VERSION OF A STEPSIZE CONTROL FOR RUNGE-KUTTA METHODS

  • Kulikov, G.Yu
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.409-438
    • /
    • 2000
  • In this paper we develop a new procedure to control stepsize for Runge- Kutta methods applied to both ordinary differential equations and semi-explicit index 1 differential-algebraic equation In contrast to the standard approach, the error control mechanism presented here is based on monitoring and controlling both the local and global errors of Runge- Kutta formulas. As a result, Runge-Kutta methods with the local-global stepsize control solve differential of differential-algebraic equations with any prescribe accuracy (up to round-off errors)

OPTIMAL PROBLEM FOR RETARDED SEMILINEAR DIFFERENTIAL EQUATIONS

  • Park, Dong-Gun;Jeong, Jin-Mun;Kang, Weon-Kee
    • 대한수학회지
    • /
    • 제36권2호
    • /
    • pp.317-332
    • /
    • 1999
  • In this paper we deal with the optimal control problem for the semilinear functional differential equations with unbounded delays. We will also establish the regularity for solutions of the given system. By using the penalty function method we derive the optimal conditions for optimality of an admissible state-control pairs.

  • PDF

NUMERICAL METHODS SOLVING THE SEMI-EXPLICIT DIFFERENTIAL-ALGEBRAIC EQUATIONS BY IMPLICIT MULTISTEP FIXED STEP SIZE METHODS

  • Kulikov, G.Yu.
    • Journal of applied mathematics & informatics
    • /
    • 제4권2호
    • /
    • pp.341-378
    • /
    • 1997
  • We consider three classes of numerical methods for solv-ing the semi-explicit differential-algebraic equations of index 1 and higher. These methods use implicit multistep fixed stepsize methods and several iterative processes including simple iteration, full a2nd modified Newton iteration. For these methods we prove convergence theorems and derive error estimates. We consider different ways of choosing initial approximations for these iterative methods and in-vestigate their efficiency in theory and practice.

MEAN-FIELD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS ON MARKOV CHAINS

  • Lu, Wen;Ren, Yong
    • 대한수학회보
    • /
    • 제54권1호
    • /
    • pp.17-28
    • /
    • 2017
  • In this paper, we deal with a class of mean-field backward stochastic differential equations (BSDEs) related to finite state, continuous time Markov chains. We obtain the existence and uniqueness theorem and a comparison theorem for solutions of one-dimensional mean-field BSDEs under Lipschitz condition.

비선형 내점법을 이용한 전력계통 평형점 최적화 (EOPT) (Power System Equilibrium Optimization (EOPT) with a Nonlinear Interior Point Method)

  • 송화창;호세 로델 도사노
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.8-9
    • /
    • 2006
  • This paper presents a new methodology to calculate an optimal solution of equilibrium to power system differential algebraic equations. It employs a nonlinear interior point method for solving the optimization formulation, which includes dynamic equations representing two-axis synchronous generator models with AVR and speed governing control, algebraic equations, and steady-state nonlinear loads. Equilibrium optimization (EOPT) is useful for diverse purposes in power system analysis and control with consideration of the system frequency constraint.

  • PDF