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OPTIMAL PROBLEM FOR RETARDED
SEMILINEAR DIFFERENTIAL EQUATIONS

DONG-GUN PARK, JIN-MuN JEONG AND WEON-KEE KANG

ABsTrRACT. In this paper we deal with the optimal control preblem
for the semilinear functional differential equations with unbounded
delays. We will also establish the regularity for solutions of the
given system. By using the penalty function method we derive
the optimal conditions for eptimality of an admissible state-control
pairs.

1. Introduction

The problem to be controlled is considered by the following evolution
equation with delay terms:

d 0 .
a-t.a;(t) = Apz(t) + Ayz(t — h) + / a(s)Aez(t + s)ds

(1.1) + f(t,(t)) + Bu(t)

2(0) =¢° w(s)=g'(s)y —h<s<0

The cost function is denoted by

b
Ja,u) = /0 L{t, o(2), uft))dt

where the pair (z,u) belongs to a separable Banach space. The object
of this paper is to minimize J(z,u) satisfying (1.1).
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First, we deal with the regularity for solutions of the retarded func-
tional differential equation (1.1) with the Lipschitz continuity of non-
linear term f(¢,z(t)) and give the variation of constant formula for the
mild solutions of (1.1)

Next, by using the regularity for solutions of (1.1) we derive the
existence of optimal pairs for J(z,u), and obtain necessary optimality
conditions for (1.1) which are described by the fundamental solution
of (1.1). To derive necessary conditions for optimality of an admissible
state-control pair , we use the penalty function method. Here, following
the methods of Papageorgiou [6,7] we extend his works to the retarded
semilinear functional differential equations (1.1).

2. Retarded semilinear differential equations

Let H and V be Hilbert spaces such that V ¢ H C V*. Therefore,
for the sake of simplicity, we may regard that ||u||« < |u| < [|ul| for all
u € V where the notations |-, ||-|| and ||-||. denote the norms of H, V'
and V* respectively, as usual. Let a(u,v) be a bounded sesquilinear
form defined in V' x V satisfying Garding’s inequality

(2.1) Re a(u,u) > collull® —c1|ul?, ¢ >0, ¢ >0.
Let Ag be the operator associated with a sesquilinear form
(2.2) (Aou,v) = —a(u,v), u, veV.

Then the operator Ap is a bounded linear from V to V*. The opera-
tors A; and Ap are bounded linear operators from V to V* such that
they map D(Ap) into H. We may assume that (D(Ag),H)1/90 =V
satisfying

: 1/2
(2.3) llull < Callullgag lul*?
for some constant C; > 0 where (D(Ap), H)g , denotes the real inter-
polation space between D(Ap) and H. The function a(-) is assumed to
be a real valued Holder continuous in [—h,0] and the controller oper-
ator B is a bounded linear operator from some Banach space Y to H.
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Let f be a nonlinear mapping from R XV into H. We assume that for
any 71, To € V there exists a constant L > 0 such that

(24) |£(t,z1) — f (&, z2)| < Lilwr — a2l
(2.5) f(t,0) =0.

We may assume that (2.1) holds for ¢; = 0 as noting that Ag + ¢ is
an isomorphism from V to V* if ¢c; # 0.

~ Identifying the antidual of H with H we may consider V.C H C V*.
The realization of Ay in H which is the restriction of Ag to

D(Ag) = {ueV: Apu € H}

is also denoted by Ap. It is known that Ap generates an analytic
semigroup in both H and V*. Replacing intermediate space F in the
paper [3] with the space H, we can derive the results of G. Blasio, K.
Kunisch and E. Sinestrari [3] regarding term by term to deduce our
semilinear system as is seen in Theorem 2.1 in [8].

PROPOSITION 2.1. Under the above assumptions for the nonlinear
mapping f, there exists a unique solution x of (1.1) such that

z e L2(0,T; V) n WY2(0, T; V*) < C((0,T}; H)

for any g = (9% ¢%) € Z = H x L?(—h,0,V). Moreover, there exists a
constant C such that

Nl 220,z ynw2omvy < CUS + g e2(—novy + llllz2omivy)s

where

- Hzzrvynwree vy = max {|| - l2mvy, I - w2, v }-

We first consider the fundamental solution of retarded system. The
fundamental solution W (t) of the equation (1.1) is defined as follows:

0

—%W(t) = AW (t) + AiW(t — h) + / a(s)AW(t + s)ds, t > 0,
h

W) =1, W(s)=0, s€[-h0).
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Since we are assuming that a(-) is Holder continuous, as is seen in [10]
the fundamental solution exists. Let Ag generate an analytic semigroup

G(t) on H. Then as is seen in [10], the fundamental solution W (t) is
a unique solution of

(2.6) W(t) = G(t) + /Ot G(t - s)(A1W(s—h)
+ /0 a(t) AW (T + s)dr)ds, t>0,
—h
(2.7) W(s) =0, s € [-h,0).

It is also known that W(¢) is strongly continuous and AW(t) and
dW (t)/dt are strongly continuous except at t =nh, n =0, 1, 2, ---.
Therefore we may assume that

Wit) <M, t>0

where M is a constant. The solution of (1.1) is expressed by
0
x(t) = W(t)g° +/ Ui(s)g'(s)ds

—h

t
+ [ Wt -n){s(ra(m)) + Bu(n)}ar,
0
Ui(s) =W(t—s—h)A; + / W(t — s+ o)a(o)Azdo
~h

in the sense of [5].

PROPOSITION 2.2. Let f € L*(0,T; H) and 2(t) = [, W (t—s)f(s)ds.
Then there exists a constant C such that

llzllL20,mv) < CVT|| £l 20,78

Proof. By the similar way of Theorem 2.3 of [3] it holds that

(2.8) l||lL2(0,75D(40)) < CT||fllL20,7;8)-
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By using Holder inequality,

T pt 2
l12 070109 = /0 /0 Wit - s)f(s)ds| dt

< [ i ( / t |f(s>sds)2dt

T t
2 2
SM/O t/o I£(s) 2 dsdt

Y 2
S M5 | |f(s)fds.
0

Therefore
(2.9) MNelr2o,r;my £ MT fllz20,7:8)-
Combining (2.8) and (2.9) we have that

23200y < CrMTI f132(0.1.)- 0

3. Existence of optimal pairs

In what follows we assume that the each embedding D(Ag) CV C H
is compact. We consider the optimal control problem of (1.1). Let W
be the set of all admissible state-control pairs. The associated cost
function is given by

' b
J(z,u) = / L(t, (t), u(t))dt.
0
We will find a state-optimal element (z,u) € W such that

P = i ' u) =
(P) J(z,u) (z,,h’,‘few"("”“) m

satisfying (1.1) a.e. 0 <t < T and u(¢t) € U(t) a.e., wu(-)—measurable.
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The state-control (z,u) is called to be admissible if it satisfies the
constraint (P) mentioned above. We assume that there exists (z,u) €
W such that J(z,u) < co.

Let T = [0,b] and Y be a separable, reflexive Banach space as
considered the control space.

We need following hypotheses.

H(L). L:Tx HxY — RU {oo} is an integrand such that
(1) (¢t,z,u) — L(t,z,u) is measurable
(2) (z,u) — L(t,z,u) is lower semicontinuous
(3) L(t,z,-) is convex
(4) o) — M(lz| + ||ul)) < L(t,z,u) ae. with o € L}T),M >0

H(U). t — U(t) is a measurable multifunction such that |U(t)| =
sup{||lu|ly :u € U(t)} < M a.e. on T and U(t) is a nonempty,
closed and convex subset of Y. (Here ¢t — U(t) measurable
means that forall z € Y, t — dy(2,U(t)) = inf{||z —v|y :v €
U(t)} is measurable)

The control space will be modeled by a separable, reflexive Banach
space Y. We assume that t — U(t) has nonempty, weakly compact
and convex values in Y, it is measurable and that

Ut)| = sup |lz|| € L*(0,00).
zeU(t)

We denote by U,q the set of admissible controls given by
(3.1) Uaa = {u € L2(0,T;Y) : u(t) € U(t), a.e.}.

It is known that U,q is weakly compact as in Theorem 2.1 in [7] and
by the Eberlein-Smulian theorem, is sequentially weakly compact.

Let Z = H x L%(—h,0;V) be the state space and be a product
Hilbert space with the norm

0
lgllz = (1g° + / IR}, 9= (%) € 2

Let g € Z and z(t; g, f,u) be a solution of the equation (1.1) associated
with nonlinear term f and control Bu at time t.



Optimal problem 323

THEOREM 3.1. Let z,(t) = z(t; g, f,u). Then the mapping u — x,
is compact from L%(0,T;Y) to L%(0,T; H).

Proof. We define the solution mapping S from L%(0,T;Y) to L%(0,
T;H) by
(Su)(t) = zu(t), ue L?(0,T;Y).

From (2.6) and Proposition 2.1 it follows

1SullL20,7vyawr20,75v+) = llzull < C{llgllz -+ | Bullp20,m;m)}-

Hence if u is bounded in L?(0,T;Y), then so is z, in L?(0,T;V) N
W12(0,T; V*). Since V is compactly embedded in H by assumption,
the embedding L2(0,T; V)N W12(0,T;V*) C L*(0,T; H) is also com-
pact in view of Theorem 2 of J. P. Aubin [2]. Hence, the mapping
u — Su = x, is compact from L2(0,T;Y) to L?(0,T; H). o

To prove the existence of admissible state-control pairs satisfying
the constraints of (P) we apply the method of Theorem 1 of Ref. [1]
to our following result.

THEOREM 3.2. Under hypotheses H(L) and H(U), there exists an
admissible state-control pair (z,u) € W such that inf J(z,u) =

Proof. We denote by S(zg) the set trajectories of (1.1). Let {(xn,
Un)} C S(zg) X Ugq be minimizing sequence for the problem (P). We
may assume that w—lmu, = v in U,q and w—limz, = z in L2NnW12,
Since S(zq) is bounded in L2 N W2 and L? n W¥2 ¢ L%(0,T; H)
compactively it holds z, — z strongly in L?(0,T;H). Thus as in
Theorem 1 in [1], we have that

J(z,u) < mJ(zq,un) =m

From now on, we show that (z,u) € W, ie., (z,u) is the desired
optimal state-control pair. Let A, F and B be the Nemitsky operators
corresponding to the maps A, f and B, which are defined by

(Az)(-) = Aoz()), (Fu)()=f(,2u), and (Bu)(-)= Bu().

Denote by ((-,-))s the duality bracket for the pair (L2(0,T;V),
L2(0,T;V*)) and by ((,-)) the inner product for L*(0,T; H).
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In virtue of Theorem 3.1 it is easily seen that F is a compact map-
ping from L2(0,T;Y) to L2(0,T; H). If we set

0
(12)(0) = ralt =) ad (Ao)t) = [ a(s)Aga(t + 5)ds

then A; (resp. Ap) is a bounded operator from L2(0,T;V)(resp.
L?(0,T;V)) to L*(—h, T — h; V*)(resp. L*(—h,T;V*)).
For every p € L?(0,T; V) we consider

((Zns P))x =((Azn, p))x + (A1, p))x + ((A2zn, D))+

(3.2) + ((Fun, ) + ((Bun,p)).

Passing to the limit as n — oo in (3.2), it follows

((,2))x = ((Az, p))x + (A1, P))x + (422, P))+ + ((Fu, p)) + ((Bu, p)).

and hence since p is arbitrary, we have

d 0
2 a(t) =Aoa(t) + Ara(t - h) + /_ a(s)das(t + 9)ds
+ f(t,z4(t)) + Bu(t), ae. 0<t<T,
:L‘(O) =90’ .’L‘(S) = gl(s)’ se [—ha O)

Thus, we have that J(x,u) = m, ie., (z,u) is the desired optimal
state-control pair. ]

4. Optimality conditions

To derive necessary conditions for optimality of an admissible state-
control pair, we use the penalty function method. Let X = L?(0,T;V)
NWH2(0,T;V*) and (Z,4) € X x L*(Y) be an optimal pair for (P).
For every § > 0, let

Ce = {(x,u) € X x Upa ; 2(0) =0, x(s)=0,

lz—-2Z|| <e and [ju—ul| <&}
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where Uyg = {v € L¥(0,T;Y);v(t) € U(t) a.e.}. We introduce the
following penalty function defined on X x L?(0,T;Y):

Tl ) =J(2,0) + 1z = 2% + o = B2s0 1v)
e - / Wt — $){f(s,2(s)) + Bu(s)}ds?

where (z,u) € C; and (Z,u) € X x L%(0,T;Y) is the optimal pair for
J(z,u). Let us consider the following equation

%w(t) = Aoz(t) + Ay(t — h)

(41) v f ? a(s)Agalt + $)ds + £(£)
-h

z(0) = go, z(s) = gl(s)’ -h<s<0

By virtue of Theorem 3.3 of [3] we have the following result on the
equation (4.1).

PROPOSITION 4.1. 1) Let F = (D(Ao),H)y - For (¢°,¢') €F x

L?(=h,0; D(Ap)) and f € L?*(0,T;H), T > 0, there exists a unique
solution x of (4.1) belonging to

L*(—h,T; D(Ap)) nWH2(0,T; H) C C([0,T}; F)
and satisfying
"a’l‘L’(-h,T;D(Ao))ﬁWI’Q(O,T;H)
< C1(19°F + 1 | L2(=h,0.Dca0)) + NFllz20,1:8))s

where C, is a constant depending on T.
2) Let (¢°,¢') € H x L*(=h,0; V) and f € L*(0,T;V*), T > 0. Then
there exists a unique solution z of (4.1) belonging to

L¥(—h,T; V) nWL2(0,T; V*) c C(0,T); H)

(4.2)

and satisfying

(4.3) "bm‘*Lz(—h,T;V)ﬂWL?(O,T;V*)
< Ci(1¢°1 + ol L2 (=nowy + ifllz20,73v )
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where C} is a constant depending on T'.

For the sake of simplicity we take the initial data (g%, g*) = (0,0)
and let the operator Q from L2(0,T; H) to L2(0,T;V) defined by

a9  (@HH) = /0 W(t-s)f(s)ds f e L3(0,T;H)

LEMMA 4.1. The operator Q defined by (4.4) is compact and || Q|| <
CVT where the constant C is in Proposition 2.2.

Proof. The mild solution of (4.1) with the initial value (g% ¢') =
(0,0) is represented by

(QF) () = z(t) = /0 Wt - 5)f(s)ds
and from (4.2)

|@fl2(0,7;D( 400w 20,11y < Cill fll 20,11
Hence if f is bounded in L2(0, T; H) then so is @f in L2(0,T; D(Ap))N
W12(0,T; H). Noting that assumption that D(Ap) is compactly em-
bedded in X. We know that the embedding

L*(0,T; D(Ag)) N WY2(0,T; H) c L*(0,T;V)

is compact. Thus we may consider that the operator Q from L?(0, T; H)
to L2(0,T;V) is compact in a sense composition of operators. O

The penalty function defined on X x L2(Y) is as follows

Je(z,u) =J(z,u) + ||z — Z|* + [lu — @2
+ |z — Q(Fz + Bu)l|Z20.1,v)

for (z,u) € C.. Noting that J.(Z,u) = J(T, %) = m, we have
inf J. < m.

If (y,v) € C., we will say that (y,v) is e-admissible. Now we will
characterize to minimize J.(-,-) over all e-admissible pairs.
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PROPOSITION 4.2. Let us assume H(L) and H(U) in section 3. Then
for every € > 0 the minimum of J. over C. is attained at a pair
(3357 ue) € C..

Proof. We will prove that for every ¢ > 0, m < J.(z,u) for all
le — Zl|x = € and all w € Uaa, |lu — llz2(0,1;y) = € Indeed, if this
dose not the case , then there is a sequence ¢ — 0 and a sequence
(zk,ur) € X such that |jzx — || = e, |lux — u|| = e and

Jek(xk, uk) S m,
ie.,
(4.5) J(zk,ur) + ||lzr — z||® + Jjukr — ul[2 <m=—||lzi — Q(Fzxx -+ Bug)ll.

Recall that U,y = {v € L%(0,T;Y);v(t) € U(t) a.e.}, the set C; is
bounded and hence, weakly compact subset of X x L?(0,T;Y). Thus
we may assume that z, — z weakly in X and uy — u weakly in U,q.
The adjoint operator Q* is given by

b
(Q79)(t) = /t W*(s — t)p(s)ds.

Let z* € L?(0,T;V*). Then B*Q*z* belongs to L2(0,T;Y*) . Hence
(QBuy, z*) = {ur, B*Q@*z*) — (u, B*Q*z*)

where (-,-) denotes the duality pairing. By assumption of nonlinear
term f it holds that QFxz, — QFz in L?(0,T;V) . Thus from (4.5)
we have

lz — Q(Fz — Bu)|| < liminf ||jzx — Q(Fzx — Bug)||
< = (@, u) + llox — @lf? + fluk - ufl?] +m
= z(t) = Q(Fz — Bu)(t) a.e. z(0)=0, z(s) =0 s € [—-h,0)
From the above inequality we have (z,u) is an admissible state-control

pair and hence
m < J(z,u).
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On the other hand, from inequality (4.5) above we see that
J(z,u) <m— 2¢2.

Thus we have a contradiction and so the fact explained in the beginning
of the proof is complete.

Next, since J.(-,-) is weakly lower semicontinuous on the C¢, we can
find (z.,uc) € Ce such that J.(z¢,u.) = infc, Je(z,u). In virtue of in
the beginning of the proof, we have that

lze — 2| <&, |lue — @] <e. -

To derive the s-optimality conditions we need the following stronger
hypotheses:

H(f1)
(1) f(-,z) is measurable and f(¢,-) is sequentially weakly continu-
ous .
(2) f(t,-) is continuously Gateaux differentiable

|0 f(t,x)| < My for all z€V

where 8, f(t, T) is the Gateaux derivative of f(¢, ) in the second
argument for (¢, ).

H(L,)
(1) t — L(t,z,u) is measurable.
(2) (x,u) — L(t,z,u) is continuous and convex in u
(3) (x,u) — L(t,z,u) is Gateaux differentiable and the Gateaux
derivative 9;L(t,z,u), 8,L(t,z,u) belongs to L2(0,T;H),
L?(0,T;Y*) respectively, and

max {||0; L(t, z, u) ||, [|OuL (¢, z, u)||}
< 0,(t) + 02(t) (|| + ||ul|?) a.e.

with 8; € LY(T; R"),6, € L>=(T; R™").
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LEMMA 4.2. Let us assume H(f,), H(L1). If P.(t) = 2(x.~Q(Fzx.—
Bu)(t)) then

(1) Pe(t) —0nf(t,xe)*Q*Pe(t) + 0, L(t, ey ue) + 2(ze —Z) = 0 ace.
1) Fel
(i) /0 (BuL(t, 2o (2), ue(t))+2(ue (t) — A(2))
+ B*Q*P.(8)(u(t) — ue(t)) = 0
for every u € Uy,gq.

Proof. Let w € X. By virtue of Proposition 4.2, there exists » > 0
such that the pair (zc + A\w,u.) is still £-admissible. Define

B(N) = Je(ze + Mw,ue), A <7

Since H(L;) be satisfied, the cost J; is also Gateaux differentiable, and
hence we know that the necessary optimality condition is given by the
variational inequality ®’(0) = 0. Therefore we have

0 = 3'(0) = im(®(X) — ®(0)) /A
= lim{J.(ze + dw, ue) — Je(ze,ue) }/A

b b
= / (B L (2, o(8), u(t)), w(t)) dt + 2 / (ze — B(t), w(t))dt
1] 0

b
+2 /0 (@(t) — Q(Fa. — Bu)(t), w(t) — Q8. (¢, ze)w(t))dt.
Set Pu(t) = 2(ze — Q(Fae — Bu)(t). Then
/Ob(Pe(t) = Oz f(t, )" Q" Pe(t) + 0: L(t, xe, ue) + 2(ze — Z),w(t)) = 0

Since w is arbitrary in X the proof of (i) is complete. Next, let (z¢,uc)
be the optimal for the e-penalized problem. Then we have

.1
}\1_13‘) X [Je(zsyue + )\(u - ue)) - Je(ms)ue)] >0
for every u € U,q. Thus it follows
b
/ (0L (2, o(t), ue(t) + 2(ue(t) — ) + B*Q*Po(t), u(®) — ue(t)) 2 0
0

Therefore, the part (ii) of the Lemma is complete. O
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THEOREM 4.1. Let us assume H(f;), H(L1). Then there exists
PeX
(i) P(t) — 8f(t,z)*Q*P(t) + 0;L(t,Z,4) = 0 where (Z,u) is an
optimal state-control pair.
(ii) (Minimum principle)

ueirllff(t)(auL(t,m(t),u(t)) + B*Q*P(t),u —u(t)) =0 a.e.

Proof. Let us consider the behavior of the ¢-optimal pairs (z¢,ue)
and of the variables P. as € tends to zero.

Recall that (z.,u.) € Ce. Since € — 0+, we have z. — Z in X and
ue — u in L?(0,T;Y). By the properties of fundamental solution of
W(t) we have P, —» P in X .

Next, from (ii) of Lemma, we have

b
/ (8uL(t, 2(2), u(t)) + B*Q* P(t), u(t) — G(t))dt > 0, u € Uaa.
0

To obtain the pointwise minimum principle, we follow the and of proof
of Theorem 4.1 [1].

Let us assume that there exists E C T measurable such that A(E) >
0 where A(-) stands for Lebesgue measure on T and for all t € E

L2 (BuL(5,7(t), u(t)) + B Q" P(8),u — (1) < 0.

Set h(t,u) = (8, L(t,z(t),u(t)) + B*Q*P(t),u — u(t)) < 0. Since U(-)
is measurable and u — h(t,u) is continuous it follows h(:,-) is jointly
measurable. Apply Aumann’s selection theorem(Ref. 9, Theorem 3)

to
{(t,u) e T xY : h(t,u) < 0} NG, U € B(E) x B(Y),

where B(E) is Borel o-field of E, there exists ug : E — Y measurable
such that h(t,uo(t)) < 0 and uo(t) € U(t) for t € T. Let

—n UO(t) if teFE
ult) = { a(t) i te Ee



Optimal problem 331

Then T € U,q and

\ ,
/ (BuL(t, (), u(t)) + B*Q"P(¥),u(t) — a(t))dt < 0,
0 v
it is contradictory to the integral minimum principle. a

REMARK. (0uL(t,Z(t), ue(t)), (u(t)—uc(t))) denotes the directional
derivative of the convex integrand L(t,z.(t),-) at the point u.(t), in
the direction u(t) — u.(t). From convex analysis , we know that there
exists

ve(-) € L*(0,T; V™)

such that
ve(t) € Ou(t, z: (), ue(t)) awe.

and

(OuL(t, ze(t), ue(t)), u(t) — ue(t)) = (ve(t), u(t) — ue(t)) ae.
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