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OPTIMAL CONTROL PROBLEMS FOR SEMILINEAR
EVOLUTION EQUATIONS

JIN-MunN Jeong, Jin-RAN KiM, aAxD HYuN-HEE ROH

ABSTRACT. This paper deals with the existence of optimal controls and
maximal principles for semilinear evolution equations with the nonlin-
ear term satisfying Lipschitz continuity. We also present the necessary
conditions of optimality which are described by the adjoint state corre-
sponding to the linear equations without a condition of differentiability
for nonlinear term.

1. Introduction

Let H and V be two complex Hilbert spaces such that V' is a dense subspace
of H. Identifying the antidual of H with H we may consider V C H C V™.

In this paper we deal with the control problems for the semilinear parabolic
type equation in H as follows.

SE) La(t) = Aalt) + £(t.2(0) + Bu(t).
ZC(O) —= &€g.

Let A be the operator associated with a sesquilinear form defined on V x V
satisfying Garding’s inequality. Let Y be a complex Banach space and B be a
bounded linear operator from Y to H.

The optimal control problems of linear systems have been so extensively
studied by [3, 6, 9] and the references cited there. In [7], Papageorgiou gives the
existence of the optimal control for a broad class of nonlinear evolution control
systems and in [8], the author obtained necessary conditions for optimality
using the penalty method first introduced in [2] for optimal control problems
governed by nonlinear evolution equations with nonmonotone nonlinearities in
the state on condition of the Gateaux differentiability of the nonlinear terms.

In this paper, combining techniques for the linear control problems and the
properties of solutions of semilinear systems in {3}, we can obtain the existence
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of optimal controls and maximal principles for (SE) where the nonlinear term
is given by

1(t,2) = /0 k(t — 5)9(s, o(s))ds,

where k belongs to L?(0,T) for T > 0.

In the proofs of the main theorems, we need some compactness hypothesis.
We make the natural assumption that the embedding D(A) C V is compact.
Then the embedding L?(0,T; D(A)) nW42(0,T; H) ¢ L?(0,T;V) is compact
in view of Aubin’s result ([1]), and we show that the mapping which maps u to
the mild solution of (SE) is a compact operator from L?(0,T;Y) to L?(0,T; H).

Two applications of the optimal control problems for cost functions are given;
one is the averaging observation control and the other is the observation of ter-
minal value. We give the maximal principle for given cost functions and present
the necessary conditions of optimality which are described by the adjoint state
correspondirg to the linear equation without a condition of differentiability of
nonlinear term.

The unique problem of the optimal control for the terminal value cost func-
tion is an open problem. One of the difficulties is that we can not obtain the
convexity property of nonlinear term.

2. Fundamental properties

Let H and V be Hilbert spaces whose norms will be denoted by | - | and
| - ||, respectively. Let A be the operator associated with a sesquilinear form
b(u,v) which is defined Garding’s inequality

Reb(u,u) > collull* —cilul®, ¢ >0, c1>0 foruelV,

that is,
(v, Au) = =blu,v), u, veEV,
where (-, -) denotes also the duality pairing between V and V*.

Then A is a bounded linear operator from V to V* and its realization in H
which is the restriction of A to

D(A)={ueV;Aue H}

is also denoted by A. Here, we note that D(A) is dense in V. Hence, it is also
dense in H. We endow the domain D(A4) of A with graph norm, that is, for
u € D(A), we define ||u||p(a) = |u| + |Au|. So, for the brevity, we may regard
that |u| < |Ju]| < ||u||pea) for all u € V.

It is known that A generates an analytic semigroup S(¢)(¢ > 0) in both H
and V'*.

From the following inequalities

co||u||2 < Reb(u,u) + cl!u,l2 < ClAu| |u| + <31|u:|2
< (ClAu| + c1|u]){u| < max{C,ci }||u||pa)|ul,
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it follows that there exists a constant Cy > 0 such that
Y 1/2 2
[ull < Collullg iy ul /.

We assume that the embedding D(A) C V' is compact.

The control space will be modeled by a Banach space Y. Let the controller
B is a bounded linear operator from Y to H and g : [0,T7] x V — H be a
nonlinear mapping such that ¢ — g(¢, z) is measurable and

(F) lg(t,x) — g(t, y)| < Lljz — y||

for a positive constant L. For the sake of simplicity we assume that g(¢,0) = 0.
For z € L*(0,T;V) we set

.t
(2.1) flt,z) = / k(t—s)g(s,z(s))ds,
0
where k belongs to L2(0,T).
Lemma 2.1. Let z € L*(0,T:V), T > 0. Then f(,z) € L?(0,T; H) and

1) 20y < LIkl L2000y VT 2| 20, 750)-
Moreover if x1, zo € L*(0,T:;V"), then

1£(Cm1) = FCoz2)lp2o0mm) < LK L2oom VT2 = zalln20.7v)-

Proof. From (F) and using the Holder inequality it is easily seen that

T t
1) oo < /U | / Kt — s)g(s, z(s))ds|?dt

T t
< Nkl / / L2ja(s)|]Pdsd
< TLA||k]

2 2
L2(0,T) ||| |L2(0,T;V)-

The proof of the second paragraph is similar. d

We denote by W™ (0,T; 1) Sobolev space of V*-valued functions on (0, T)
whose distributional derivatives up to m belong to L?(0,7 : V*).

Using the maximal regularity for more general retarded parabolic system in
4, 6], we establish the following results on the solvability of (SE)(Cf. Theorem
3.1 of [5)).

Proposition 2.2. Suppose that the assumption (F') holds. Then the following
properties hold.

1) Let the assumption (F) be satisfied and xo € (D(A), H)%,2 where (D(A),
H)%,2 is the real interpolation space between D(A) and H. Then there exists a
unique solution x of (SE) belonging to

L*(0,T; D(A)) N W*(0,T; H) € C([0, T} (D(A), H) 1 »)

B
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and satisfying
Nzl L2 0, 7;D(A) W12 0,1;8) < Cl(“«"‘foH(D(A),H)%,2 + ||ullL20,7;v));

where ¢y 1s a constant depending on T.
2) Let zg € H and the assumption (F') be satisfied. Then there exists a
unique solution x of equation (SE) such that

z € L2(0,T; V)N W(0,T; V*) C C([0, T}; H).
Moreover, there exists a constant ¢y such that
||| 20, 7;vynwr20,mv+) < ea(|@ol + |[ullz2(0,7:v))-

Choose a bounded subset U of Y and call it a control set. Suppose that an
admissible control v € L%(0,T;Y) is strongly measurable function satisfying
u(t) € U for almost all ¢, and let z(¢; f,u) be a solution of (SE) associated with
the nonlinear term f and a control u at time ¢. The solution z(¢; f,u) of (SE)
for each admissible control u is called a trajectory corresponding to u. Then,
1t is represented by

z(t; f,u) = S(t)zo + /0 S(t — s){f(s,z(s)) + Bu(s)}ds.

Let zg and z; be two different elements of H. Let us assume that there
exists an admissible control u satisfying z(¢; f,u) = z; and z(0) = zo for some
t > 0. We can define the transition time that is the first time ¢, such that

IB(tu; f, U) =I.

The lower limit ¢g of ¢,, for which there exists an admissible control satistying
z(ty; f,u) = x1 is called the optimal time and we will show the existence of the
admissible control satisfying x(%g; f,ug) = 21 that is the time optimal control
uo with respect to {xo, 1 }.

Lemma 2.3. Let x, be the solution of (SE) corresponding to u. Then the
mapping u — T, is compact from L*(0,T;Y) to L*(0,T;V).

Proof. We define the solution mapping @ from L?(0,T;Y) to L*(0,T;V) by
(Qu)(t) = z4(t), u € L?0,T;Y).
In virtue of 1) of Proposition 2.2
1Qul|L2(0,7;D(a))wr20,1;1) = [|ZullL2(0,7;D0A)) AW 2(0,7:H)
< atllzollioeay,my , + lullezo,rn }-
Hence if u is bounded in L?(0,7;Y), then so is z, in
L*(0,T; D(A))nWbY%0,T; H).

Noting that D(A) is compactly embedded in V' by assumption, the embed-
ding L2(0,T: D(A)) N W12(0,T; H) c L*(0,T;V)) is also compact in view of
Theorem 2 of Aubin [1]. Hence, the mapping u — Qu = z,, is compact from
L?(0,T;Y) to L2(0,T; V). O
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Theorem 2.4. Suppose that the assumption (F') holds. Then there exists a
time optimal control with respect to {xo, 1}

Proof. Put to = inf{t: z(¢; f,u) = z; where u is an admissible }. Let {u,,z,}
be a minimizing sequence such that

Tn(tn; f,un) = S(ta)xo +/ S(tn — 8){f(s,zn(s)) + Buy(s)}ds.

Note that x,(tn; f,un) € C([0,T]; H) by 2) of Proposition 2.2. Since U is
bounded, {z,(tx; f,un)} is also bounded and hence weakly sequentially com-
pact. Hence, we set

un — ug weakly in L*(0,T;Y)
T(tn; f,un) > T weakly in H
tn {4 to.

Let z* € V*. Then, the duality pairing between V and V* by (-,-) is
extension of the scalar product of H,

(zn(tn; frun).

(2.2) = (S(tp)xo,x / (S(t. — s){f(s,z,(8)) + Bun(s)},z™)ds
+/t (S{tn — s){f(s,xn(8)) + Bun(s)},z")ds.

From the assumptions (F) and Proposition 2.2 it follows that

/t“ $){f(s,zn(8)) + Bun(s)},z")ds
< (sup [[SOID{LIE Lz0, ) |ZnllL20, 753

te0.T]

+{[Bliltunlleo.7:v) Ha*[(tn — to)/?

< (sup [IS(B)])
t€(0,7)

+{1Bll|tnllr2(0.1:v) Ha"|(En = t0)' /2.

Thus, the first and third on the right hand side of (2.2) converge strongly to
S(to)xg and 0, respectively. Let F be the Nemitsky operator corresponding to
the map f, which is defined by

(Fu)(-) = f( za).
From (F) and Lemma 2.3 we see that F is a compact operator from L?(0,T;Y)
to L?(0,T; H) and hence, it holds Fu,, — Fuy strongly in L?(0,T; H). There-
fore, by tending n — oo, it follows that

(@2%) = (S(to)zo. ") + [ (Slto ~ ){(Fuo)(s) + Buo(s)}, =*)ds

{L||kl|L20,myc1 (|zo| + ||unllL20,7:v))
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Since z* is arbitrary chosen

o

2= S(tg)zo + i S{to — $){{Fug)(s) + Bug(s)}ds,

and hence, ug is the time optimal control. O

3. Averaging observation control

Let Z be a real Hilbert space and let C(t) be bounded from H to Z for
each ¢ and be continuous in ¢ € [0,T]. Let y € L?(0,T'; Z). Suppose that there
exists no admissible control which satisfies C'(¢)z(t; f,u) = y(¢t) for almost all
t. So we consider a cost functional given by

1

T
3. Iw) =5 [ [Ce fu) - y(o)l e

Let w € L'(0,7;Y). Then it is well known that

h
(3.2) Eqﬁfi/[@@+s%~ﬂﬂhds:0
— 0

for almost all point of ¢t € (0,T).

Definition 3.1. The point ¢ which permits (3.2) to hold is called the Lebesgue
point of u.

Theorem 3.2. Let U be a bounded closed convex subset of Y. Then, there
exists an optimal control for the cost functional (3.1).

Proof. Let {u,} be a minimizing sequence of J such that

inf J(u) = lim J(un,).

ucel n— 00

Since U is bounded and weakly closed, there exist a subsequence, which we
write again by {u,}, of {u,} and a & € U such that

un = 0 weakly in L*(0,T;Y).

Now we show that 4 is admissible as follows. Since U is a closed convex set
of Y, by Mazur theorem as an important consequence of the Hahn-Banach
theorem, there exists an fo € Y* and ¢ € (—00,00) be such that fo(u) < ¢ for
all u € U. Let s be a Lebesgue point of 4 and put

1 s+€
won =7 [ un(t)dt

for each € > 0 and n. Then, fo(w.,) < ¢ and we have

1 S—+¢€
We oy We = —/ w(t)dt weakly as n — oo.
6 &

By letting € — 0, it holds that w. — @(s) and fo(4) < ¢, so that 4(s) € U.
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From Proposition 2.2 it follows that {z(¢; f,u,)} is also bounded and hence
weakly sequentially compact. Hence, as seen in the prove of Theorem 2.4, we
have

z(t; f,un) — x(t; f, i) weakly in H.
Therefore, we have
inf J(u) < J(@) < liminf J(u,) = inf J(u).

Thus, this @ is an optimal control. O

For the sake of simplicity we assume that S(¢) is uniformly bounded: then
S()] < M(t > 0)

for some M > 0 (e.g. [6]).

The optimality condition J is often used to derive the uniqueness of optimal
control. So, we give the conditions for the uniqueness of optimal control as
follows.

Theorem 3.3. Let F and B defined by (Fu)(-) = f(-, z,) and (Bu)(-) = Bu(-),
respectively. Let F + B and C(t)(t > 0) be one to one mappings. Then the
optimal control for the cost function (3.1) is unique.

Proof. Let 4 be an optimal control and &(t) = z(¢; f,a). Let ¢y be a Lebesgue
point of 4,v and F(v — @). For tg < tg+€ < T, put

v i g <t <ty +e
u(t) =

(3-3) u(t) otherwise.

Then w is an admissible control. Let z(t) = z(¢; f,u). Then, z(t) — (t) = 0
for 0 <t <ty and

to+e
(34) x(t) - &(t) = / S(t — 8){f(s,2(5)) — f(s,(s)) + B(v — i(s))}ds

to
for tg < t < tg + €. Using the Holder inequality it is easily seen that

Hf(a z)— f(, j})llig(tg,to-i-e;H)

to-+e 8
- / | [ k(s — 7)(g(r,2(r)) — g(r, 2(r)))dr|?ds

tg-}-f &
< Koy / /0 L2\la(r) — #(r))|2drds
to

< €L2|1k|@2(o,7‘)”$ - 55”%2(to,to+e;V)

and hence, with the aid of suitable change of variables and Holder inequality

to+e¢
| / S(t - 8)(f(s,2(s)) — f(s,3(s)))ds]

< €ﬂ*fLHkHL2(0,T)“33 - -%HLQ(to,to—l—e;V)

(3.5)
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for tg < t < tg + €. Noting that v — 4 is admissible and %, is Lebesgue point of
v — 1, there exists a constant ¢ > 0 such that

llv—a(t)||ly <c for tg <t <tg+e.

Thus, we obtain

to+¢€
|z(t) — 2(t)] < | 5(t = s){f(s,2(s)) — f(5,2(s)) + B(v — (s)) }ds|

to
< eML||k||L20,1) |7 — || L2(t0,t0+¢;v) T €cM||B]].

Hence, since the control set U is bounded, in virtue of Proposition 2.2, there
exists a constant ¢ such that

(3.6) 2(t) — 3(2)] < ce
holds for any 0 < ¢ < 7T'. Since 1 is optimal, we have
0< (I () ~ J(@)
. / L (CO () - 50), COE) — (b))
(3.7) € Jo ; ,
-4 MEOICOREONR

=1+11.

From (3.6) it follows that
(3.8) lim IT = 0.

e—0

The first term of (3.7) can be represented as

T
I= 1/ (C(&)(z(t) — £(t), C()2(t) — y(t))dt

€ Ji,

1 to+e€ 1 T
— “f +_/ — I1 + Ig.
€ Jito € Jtote

On account of (3.6), it holds that
(3.9) lim; = 0.

e—0
Let £t > o and € =& 0. Then, we obtain
1

lim —(2(t) — 2(t))
1 to+¢€
=i 2 [ S 9E 4B - 6

= S(t — to)(F + B)(v — 4)(%o)-
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Hence,
T
im I = lim =~ [ (C)(@(t) — #(t)), Ct)E () — y())dt

e—0 ¢ —0 € t0_+’_€

(3.10) .
= [ St~ to)(F + B - (1), COHO) - y(®)it

to

By (3.7)-(3.10), the inequality

T
/ (C)S(t — 8)(F + B)(v — @)(s), C()2(t) — y(£))dt > 0

holds for every v € U and for all Lebesgue points s of 4. Let us denote two
optimal controls by u; and uy and their corresponding by x; and x5. Then, by
the similar procedure mentioned above, the inequalities

T
[ (C)S(t ~ $)(F + B)(uz — u1)(s), C(t)as (t) — y(£))dt > 0

and -
/ (C(t)S(t — 35)(F + B)(u; —uz)(s), C(t)x2(t) — y(t)dt > 0

hold. Add both inequalities and integrate the resultant inequality from 0 to T
with respect to s. Then, since

2o(t) — 21 (t) = / S(t — 5)(F + B)(uy — u)(s)ds,
it holds -
/0 C(1) (@ (t) = 71 (1)) < 0

Since C'(t) is one to one, we have that x.(t) —z; (1) = 0. Hence, by the property
of semigroup S(t¢), it holds that (F + B)(u; — uy)(f) = 0 almost everywhere.
From that F + B is one to one, u;(t) = us(t) holds for almost all ¢. O

In order to derive necessary optimality conditions for the optimal control for
J, we will establish the maximum principle, which is derived from the optimal
condition as follows.

Theorem 3.4. Let u be an optimal control. Then the inequality

max(v, B"z(s)) = (u(s), B z(s))

holds, where

T
= [ 5= 900w - Cwie)
Here, z(s) satisfies the following transposed system:

(As) {ad;‘z(-‘v‘) = AT 2(s) + O () ((s) — C()ils)),
z2(T) = 0O
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in the weak sense.
Proof. Let u be an admissible control defined by (3.3) and let ¢ be a Lebesgue
point of 4,v € U. Putting that £(¢) = z(¢; f,4), z(t) = z(¢; f,u), and noting

|£(s,2(s)) = f(s,2(s))| < Lilkllcro,m [08 |z(7) — &(7)|dr,

then, by similar to the proof of (3.5), we obtain that the inequality
to+e

| t S(t - s)(f(s,2(s)) — f(s,%(s)))ds|

to+e s
< ML||k /a:'r—-—:i:Tdes
(3.11) < lkllcio,m . lz(7) — 2(7)|
to+e ptote
= MIjillcwn [ [ llatr) = #(0lldsdr
to T

< €MLYkl co.nllz — £l L2(t0,t0+6v)

holds.
Hence, it follows from Proposition 2.2 and the boundedness of U that there
exists a constant ¢’ such that

tote
(3.12) | / S(t - 8)(F(s, 2(s)) ~ F(s,8(s)))ds| < ¢

Hence, noting that for {g <t <ty + ¢

to+¢€
o(t) - 3(t) = / S(t - $){f(s,(s)) — f(s,(s)) + B(v - (s))}ds,

we obtain 0
lim = (2(t) — (1)
to+e¢
i L [ St 0700260 - 705,509 + B0 - Do

= S(t — to)B(v — u)(to).
Thus, as in (3.10), we have

T
lim 7, = [ (CR)(S(t — to)B(v — ) (t), C£)E(t) — y(2))dt,

¢—0

that is, from (3.7) it follows

T
/ (C®)S(t — 8)B(v — )(s), C(O)E(t) — y(t))dt > O

holds for every v € U and for all Lebesgue points s of 7i. Hence, we have
(v —1(s), B*2(s)) <0,
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where -
4@:/'9u~wwammwmmWMMt

Here, 2(s) is a solution in some sense of the equation (AS). 0

4. Observation of terminal value

Let y be an element of H and suppose there exists no admissible control
which satisfies z(T'; f,u) = y. We assume a cost functional given by

(4.1) J, = %[:p(T;f, u) — yl.

Theorem 4.1. Let (F) be satisfied. Then there exists an optimal control for
the cost functional (4.1). Moreover, if 4 is an optimal control for (4.1), then

(4.2) max(v, B 2(t)) = (a(t), B"z(t))

almost everywhere in 0 <t < T, where 2(t) = S*(T —t)(y —z(T; f, 1)) satisfies
the initial value problem

L2ty = —A*z2(1),
AT) = y—o(T:f.0)

in the weak sense.

Proof. Let v € U. Let u be an admissible control defined by (3.3) and tg be a
Lebesgue point of 4,v € U. Put z(t) = «(¢; f,u) and z(t) = z(¢; f,4). Then

tote€
wﬂﬁmﬂT%j/ S(T — ){f(s,2(s)) — f(5,%(s)) + B(v — a(s))}ds.

to

Since 1 is an optimal control, we have

0< = (hw)? — i(@)?)

(4.3) - %(x(T) — #(T),#(T) —y) + é—llzJ:v(T ) — &(T)|?
=T+ 11
By (3.11), we have Il — 0 as ¢ — 0. From (3.12) it follows that
to+e¢

%[ S(T = )(f(5,2(s)) — f(s,2(s)))ds — 0.

thus,
1 to+e
Izggl' S(T — $){f(s,2(s)) = [(5,8(s)) + B(v — 2)(s)}ds, #(T) — y)

 (58(T = to) Bv — @)(to), #(T) - ).
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as € = 0. Therefore, from (4.3) we have
0 < ({v—a)(to), B*S™(T — t0)(2(T) — ¥)),

which implies that (4.2) holds at each Lebesgue point . O
Definition 4.2. Let z(t) = S(T — t)*2p be a solution of the equation

d

4 — _A*
(AS-].) dtz(t) Z(t),

Z(T) = 2.

We say the adjoint system (AS-1) is weakly regular if z5 = 0 follows from
the existence of a set £ C [0,T] such that the measure of E is positive and
z(t) =S(T —t)*2p=0forallt € E.

The examples for which the system (AS-1) is weakly regular are given in [9,
section 7.3).

Theorem 4.3. Let the cost J; be given as (4.1). Assume that the adjoint
system (AS — 1) is weakly regular and B* is one to one, then the oplimal
control G(t) is the bang-bang control, i.e., 4(t) satisfies

(4.4) u(t) € OU  for almost everywhere t € [0,T.

Proof. For the cost function Jj, the maximal principle is written by

rglea,g(v,B*z(t)) = (u(t), B*2(t)) a.e. t €]0,T],

where z(t) = S(T — t)*zg. It is sufficient to show (4.4) that B*z(t) # 0 a.e.
t € [0,T]. Suppose the contrary that there exists a set E¥ such that the measure
of E is positive and B*z(t) = 0 ¢t € E. Since B* is one to one and (AS-1) is
weakly regular, we have that zo = 0, which is a contraction. (1

The unique problem of the optimal control for the terminal value cost func-
tion J; is an open problem. One of the difficulties is that we can not obtain
the convexity property of nonlinear term.
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