• 제목/요약/키워드: State of Virginia

Search Result 173, Processing Time 0.034 seconds

Synthesis and Characterization of Sulfonated Poly(arylene ether) Polyimide Multiblock Copolymers for Proton Exchange Membranes

  • Lee, Hae-Seung;Roy Abhishek;Badami Anand S.;McGrath James E.
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.160-166
    • /
    • 2007
  • Novel multiblock copolymers, based on segmented sulfonated hydrophilic-hydrophobic blocks, were synthesized and investigated for their application as proton exchange membranes. A series of segmented sulfonated poly(arylene ether sulfone)-b-polyimide multiblock copolymers, with various block lengths, were synthesized via the coupling reaction between the terminal amine moieties on the hydrophilic blocks and naphthalene anhydride functionalized hydrophobic blocks. Successful imidization reactions required a mixed solvent system, comprised of NMP and m-cresol, in the presence of catalysts. Proton conductivity measurements revealed that the proton conductivity improved with increasing hydrophilic and hydrophobic block lengths. The morphological structure of the multiblock copolymers was investigated using tapping mode atomic force microscopy (TM-AFM). The AFM images of the copolymers demonstrated well-defined nanophase separated morphologies, with the changes in the block length having a pronounced effect on the phase separated morphologies of the system. The self diffusion coefficient of water, as measured by $^1H$ NMR, provided a better understanding of the transport process. Thus, the block copolymers showed higher values than Nafion, and comparable proton conductivities in liquid water, as well as under partially hydrated conditions at $80^{\circ}C$. The new materials are strong candidates for use in PEM systems.

State of the Science: Salivary Biomarker Utilization for Stress Research

  • An, Kyungeh;Starkweather, Angela;Sturgill, Jamie;Kao, Hsueh-Fen S.;Salyer, Jeanne
    • Perspectives in Nursing Science
    • /
    • v.11 no.2
    • /
    • pp.87-93
    • /
    • 2014
  • Purpose: The use of salivary biomarkers for stress research is increasing based on the convenience of collection, affordability and scientific merit. This short review provides an overview of the state of the science of salivary biomarkers utilized in research related to stress. Methods: An integrative review was conducted. Results: The trend of utilizing salivary biomarkers in stress research was reviewed, specifically, focusing on the use of endocrine and inflammatory biomarkers incorporated in previous stress research. Then, a review of sampling procedures for salivary biomarkers and the analytic methods is provided. Finally, a discussion on the strengths and areas for improvement in the use of salivary biomarkers in stress research is included. Conclusion: Salivary biomarkers as an alternative to blood biomarkers are increasingly being recognized as a legitimate source for analyzing the stress response in humans.

Europium-driven Alloy 709 corrosion in static FLiNaK molten salt at 700 ℃

  • Taiqi Yin;Amanda Leong;Jinsuo Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1738-1746
    • /
    • 2024
  • The effect of europium-driven corrosion behavior of Alloy 709 in FLiNaK molten salt was investigated by static immersion tests at 700 ℃. It was found that the corrosion of Alloy 709 increased after the addition of EuF3, even though the standard reduction potential of Eu(III)/Eu(II) was negative than those of Fe(II)/Fe, Ni(II)/Ni and Cr (II)/Cr. The presence of Eu(III) led to deeper corrosion attack layers and more pits on the steel surface in comparison with corrosion in blank FLiNaK. However, the addition of Eu(III) seemed to have a role in reducing surface cracking that was explored in corrosion by blank FLiNaK, which depended on Eu(III) concentration.

Estimation of viscous and Coulomb damping from free-vibration data by a least-squares curve-fitting analysis

  • Slemp, Wesley C.H.;Hallauer, William L. Jr.;Kapania, Rakesh K.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.279-290
    • /
    • 2008
  • The modeling and parameter estimation of a damped one-degree-of-freedom mass-spring system is examined. This paper presents a method for estimating the system parameters (damping coefficients and natural frequency) from measured free-vibration motion of a system that is modeled to include both subcritical viscous damping and kinetic Coulomb friction. The method applies a commercially available least-squares curve-fitting software function to fit the known solution of the equations of motion to the measured response. The method was tested through numerical simulation, and it was applied to experimental data collected from a laboratory mass-spring apparatus. The mass of this apparatus translates on linear bearings, which are the primary source of light inherent damping. Results indicate that the curve-fitting method is effective and accurate for both perfect and noisy measurements from a lightly damped mass-spring system.

A Primary-Side-Assisted Zero-Voltage and Zero-Current Switching Three-Level DC-DC Converter

  • Jeon S. J.;Canales F.;Barbosa P. M.;Lee F. C.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.227-231
    • /
    • 2001
  • A new primary-side-assisted zero-voltage and zero-current switching (ZVZCS) three-level DC-DC converter with flying capacitor is proposed. The three-level converters are promising in high voltage applications, and ZVZCS is a very effective means for reducing switching losses. The proposed DC-DC converter uses only one auxiliary transformer and two diodes to obtain ZCS for the inner leg. It has a simple and robust structure, and offers soft-switching capability even in short-switching conditions. The proposed converter was verified by experiments in a 6KW prototype designed for communication applications and operating at 100kHz.

  • PDF

Development of a multidisciplinary design optimization framework for an efficient supersonic air vehicle

  • Allison, Darcy L.;Morris, Craig C.;Schetz, Joseph A.;Kapania, Rakesh K.;Watson, Layne T.;Deaton, Joshua D.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.17-44
    • /
    • 2015
  • A modular multidisciplinary analysis and optimization framework has been built with the goal of performing conceptual design of an advanced efficient supersonic air vehicle. This paper addresses the specific challenge of designing this type of aircraft for a long range, supersonic cruise mission with a payload release. The framework includes all the disciplines expected for multidisciplinary supersonic aircraft design, although it also includes disciplines specifically required by an advanced aircraft that is tailless and has embedded engines. Several disciplines have been developed at multifidelity levels. The framework can be readily adapted to the conceptual design of other supersonic aircraft. Favorable results obtained from running the analysis framework for a B-58 supersonic bomber test case are presented as a validation of the methods employed.

Corrosion behavior of aluminum alloy in simulated nuclear accident environments regarding the chemical effects in GSI-191

  • Da Wang ;Amanda Leong;Qiufeng Yang ;Jinsuo Zhang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4062-4071
    • /
    • 2022
  • Long-term aluminum (Al) corrosion tests were designed to investigate the condition that would generate severe Al corrosion and precipitation. Buffer agents of sodium tetraborate (NaTB), trisodium phosphate (TSP) and sodium hydroxide (NaOH) were adopted. The insulation materials, fiberglass and calcium silicate (Ca-sil), were examined to explore their effects on Al corrosion. The results show that significant precipitates were formed in both NaTB/TSP-buffered solutions at high pH. The precipitates formed in NaTB solution raise more concerns on chemical effects in GSI-191. A passivation layer formed on the surfaces of coupon in solution with the presence of insulations could effectively mitigate Al corrosion. The Fe-enriched intermetallic particles (IPs) embedded in coupon appeared to serve as seeds to readily induce precipitation via providing extra area for heterogeneous Al hydroxide precipitation. X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses indicate that the precipitates are mainly boehmite (γ-AlOOH) and no direct evidence confirms the presence of sodium aluminum silicate or calcium phosphate.

Design and Efficiency Analysis 48V-12V Converter using Gate Driver Integrated GaN Module (게이트 드라이버가 집적된 GaN 모듈을 이용한 48V-12V 컨버터의 설계 및 효율 분석)

  • Kim, Jongwan;Choe, Jung-Muk;Alabdrabalnabi, Yousef;Lai, Jih-Sheng Jason
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.201-206
    • /
    • 2019
  • This study presents the design and experimental result of a GaN-based DC-DC converter with an integrated gate driver. The GaN device is attractive to power electronic applications due to its superior device performance. However, the switching loss of a GaN-based power converter is susceptible to the common source inductance, and converter efficiency is severely degraded with a large loop inductance. The objective of this study is to achieve high-efficiency power conversion and the highest power density using a multiphase integrated half-bridge GaN solution with minimized loop inductance. Before designing the converter, several GaN and Si devices were compared and loss analysis was conducted. Moreover, the impact of common source inductance from layout parasitic inductance was carefully investigated. Experimental test was conducted in buck mode operation at 48 -12 V, and results showed a peak efficiency of 97.8%.

An optimization framework for curvilinearly stiffened composite pressure vessels and pipes

  • Singh, Karanpreet;Zhao, Wei;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • v.6 no.1
    • /
    • pp.15-30
    • /
    • 2021
  • With improvement in innovative manufacturing technologies, it became possible to fabricate any complex shaped structural design for practical applications. This allows for the fabrication of curvilinearly stiffened pressure vessels and pipes. Compared to straight stiffeners, curvilinear stiffeners have shown to have better structural performance and weight savings under certain loading conditions. In this paper, an optimization framework for designing curvilinearly stiffened composite pressure vessels and pipes is presented. NURBS are utilized to define curvilinear stiffeners over the surface of the pipe. An integrated tool using Python, Rhinoceros 3D, MSC.PATRAN and MSC.NASTRAN is implemented for performing the optimization. Rhinoceros 3D is used for creating the geometry, which later is exported to MSC.PATRAN for finite element model generation. Finally, MSC.NASTRAN is used for structural analysis. A Bi-Level Programming (BLP) optimization technique, consisting of Particle Swarm Optimization (PSO) and Gradient-Based Optimization (GBO), is used to find optimal locations of stiffeners, geometric dimensions for stiffener cross-sections and layer thickness for the composite skin. A cylindrical pipe stiffened by orthogonal and curvilinear stiffeners under torsional and bending load cases is studied. It is seen that curvilinear stiffeners can lead to a potential 10.8% weight saving in the structure as compared to the case of using straight stiffeners.