• Title/Summary/Keyword: State identification

Search Result 1,031, Processing Time 0.027 seconds

Time-varying modal parameters identification of large flexible spacecraft using a recursive algorithm

  • Ni, Zhiyu;Wu, Zhigang;Wu, Shunan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.184-194
    • /
    • 2016
  • In existing identification methods for on-orbit spacecraft, such as eigensystem realization algorithm (ERA) and subspace method identification (SMI), singular value decomposition (SVD) is used frequently to estimate the modal parameters. However, these identification methods are often used to process the linear time-invariant system, and there is a lower computation efficiency using the SVD when the system order of spacecraft is high. In this study, to improve the computational efficiency in identifying time-varying modal parameters of large spacecraft, a faster recursive algorithm called fast approximated power iteration (FAPI) is employed. This approach avoids the SVD and can be provided as an alternative spacecraft identification method, and the latest modal parameters obtained can be applied for updating the controller parameters timely (e.g. the self-adaptive control problem). In numerical simulations, two large flexible spacecraft models, the Engineering Test Satellite-VIII (ETS-VIII) and Soil Moisture Active/Passive (SMAP) satellite, are established. The identification results show that this recursive algorithm can obtain the time-varying modal parameters, and the computation time is reduced significantly.

A Comprehensive Review of Emerging Computational Methods for Gene Identification

  • Yu, Ning;Yu, Zeng;Li, Bing;Gu, Feng;Pan, Yi
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.1-34
    • /
    • 2016
  • Gene identification is at the center of genomic studies. Although the first phase of the Encyclopedia of DNA Elements (ENCODE) project has been claimed to be complete, the annotation of the functional elements is far from being so. Computational methods in gene identification continue to play important roles in this area and other relevant issues. So far, a lot of work has been performed on this area, and a plethora of computational methods and avenues have been developed. Many review papers have summarized these methods and other related work. However, most of them focus on the methodologies from a particular aspect or perspective. Different from these existing bodies of research, this paper aims to comprehensively summarize the mainstream computational methods in gene identification and tries to provide a short but concise technical reference for future studies. Moreover, this review sheds light on the emerging trends and cutting-edge techniques that are believed to be capable of leading the research on this field in the future.

A Class of Recurrent Neural Networks for the Identification of Finite State Automata (회귀 신경망과 유한 상태 자동기계 동정화)

  • Won, Sung-Hwan;Song, Iick-Ho;Min, Hwang-Ki;An, Tae-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.1
    • /
    • pp.33-44
    • /
    • 2012
  • A class of recurrent neural networks is proposed and proven to be capable of identifying any discrete-time dynamical system. The applications of the proposed network are addressed in the encoding, identification, and extraction of finite state automata. Simulation results show that the identification of finite state automata using the proposed network, trained by the hybrid greedy simulated annealing with a modified error function in the learning stage, exhibits generally better performance than other conventional identification schemes.

Real-Time Identification and Estimation of Transformer Tap Ratios Containing Errors

  • Kim, Hongrae;Kwon, Hyung-Seok
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.3
    • /
    • pp.109-113
    • /
    • 2002
  • This paper addresses the issue of parameter error identification and estimation in electric power systems. Parameter error identification and estimation is carried out as a part of the state estimation. A two stage estimation procedure is used to detect and identify parameter errors. Suspected parameters are identified by the WLAV state estimator in the first stage. A new WLAV state estimator adding suspected system parameters in the state vector is used to estimate the exact values of parameters. Supporting examples are given by using the IEEE 14 bus system.

On-line integration of structural identification/damage detection and structural reliability evaluation of stochastic building structures

  • Lei, Ying;Wang, Longfei;Lu, Lanxin;Xia, Dandan
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.789-797
    • /
    • 2017
  • Recently, some integrated structural identification/damage detection and reliability evaluation of structures with uncertainties have been proposed. However, these techniques are applicable for off-line synthesis of structural identification and reliability evaluation. In this paper, based on the recursive formulation of the extended Kalman filter, an on-line integration of structural identification/damage detection and reliability evaluation of stochastic building structures is investigated. Structural limit state is expanded by the Taylor series in terms of uncertain variables to obtain the probability density function (PDF). Both structural component reliability with only one limit state function and system reliability with multi-limit state functions are studied. Then, it is extended to adopt the recent extended Kalman filter with unknown input (EKF-UI) proposed by the authors for on-line integration of structural identification/damage detection and structural reliability evaluation of stochastic building structures subject to unknown excitations. Numerical examples are used to demonstrate the proposed method. The evaluated results of structural component reliability and structural system reliability are compared with those by the Monte Carlo simulation to validate the performances of the proposed method.

Crack identification based on Kriging surrogate model

  • Gao, Hai-Yang;Guo, Xing-Lin;Hu, Xiao-Fei
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.25-41
    • /
    • 2012
  • Kriging surrogate model provides explicit functions to represent the relationships between the inputs and outputs of a linear or nonlinear system, which is a desirable advantage for response estimation and parameter identification in structural design and model updating problem. However, little research has been carried out in applying Kriging model to crack identification. In this work, a scheme for crack identification based on a Kriging surrogate model is proposed. A modified rectangular grid (MRG) is introduced to move some sample points lying on the boundary into the internal design region, which will provide more useful information for the construction of Kriging model. The initial Kriging model is then constructed by samples of varying crack parameters (locations and sizes) and their corresponding modal frequencies. For identifying crack parameters, a robust stochastic particle swarm optimization (SPSO) algorithm is used to find the global optimal solution beyond the constructed Kriging model. To improve the accuracy of surrogate model, the finite element (FE) analysis soft ANSYS is employed to deal with the re-meshing problem during surrogate model updating. Specially, a simple method for crack number identification is proposed by finding the maximum probability factor. Finally, numerical simulations and experimental research are performed to assess the effectiveness and noise immunity of this proposed scheme.

State-Space Model Identification of Tandem Cold Mill Based on Subspace Method (부분공간법을 이용한 연속 냉간압연기의 상태공간모델 규명)

  • Kim, In-Su;Hwang, Lee-Cheol;Lee, Man-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.290-302
    • /
    • 2000
  • In this paper, we study on the identification of discrete-time state-space model for robust control of tandem cold mill, using a MOESP(MIMO output-error state-space model identification) algorithm based on subspace method. It is shown that the identified model is well adapted to input-output data sets, which are obtained from nonlinear mathematical equations of tandem cold mill. Furthermore, deterministic H$\infty$ norm bounds on uncertainties including modeling errors and disturbances are quantitatively identified in the frequency domain. Finally, the results give a basic idea to determine weighting functions included in formulating some robust control problems of tandem cold mill.

Time Domain Identification of nonlinear Structural Dynamic Systems Using Unscented Kalman Filter (Unscented Kalman Filter를 이용한 비선형 동적 구조계의 시간영역 규명기법)

  • 윤정방
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.180-189
    • /
    • 2001
  • In this study, recently developed unscented Kalman filter (UKF) technique is studied for identification of nonlinear structural dynamic systems as an alternative to the extended Kalman filter (EKF). The EKF, which was originally developed as a state estimator for nonlinear systems, has been frequently employed for parameter identification by introducing the state vector augmented with the unknown parameters to be identified. However, the EKF has several drawbacks such as biased estimations and erroneous estimations especially for highly nonlinear dynamic systems due to its crude linearization scheme. To overcome the weak points of the EKF, the UKF was recently developed as a state estimator. Numerical simulation studies have been carried out on nonlinear SDOF system and nonlinear MDOF system. The results from a series of numerical simulations indicate that the UKF is superior to the EKF in the system identification of nonlinear dynamic systems especially highly nonlinear systems.

  • PDF

Experimental Verification of the Structural Damage Identification Method Developed for Beam Structures (보 구조물에 대한 손상규명기법의 실험적 검증)

  • Cho, Kook-Lae;Shin, Jin-Ho;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2574-2580
    • /
    • 2002
  • In this paper, an experimental verification has been conducted for the frequency response function (FRF)-based structural damage identification method (SDIM) proposed for beam structures. The FRF-based SDIM requires the natural frequencies and mode shapes measured in the intact state and the FRF-data measured in the damaged state. Experiments are conducted for the cantilevered beam specimens with one slot and with three slots. It is shown that the proposed FRF-based SDIM provides damage identification results that agree quite well with true damage state.

Time Domain Identification of Nonlinear Structural Dynamic Systems Using Unscented Kalman Filter (Unscented Kalman Filter를 이용한 비선형 동적 구조계의 시간영역 규명기법)

  • Yun, Chung-Bang;Koo, Ki-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.117-126
    • /
    • 2001
  • In this study, the recently developed unscented Kalman filter (UKF) technique is studied for identification of nonlinear structural dynamic systems as an alternative to the extended Kalman filter (EKF). The EKF, which was originally developed as a state estimator for nonlinear systems, has been frequently employed for parameter identification by introducing the state vector augmented with the unknown parameters to be identified. However, the EKF has several drawbacks such as biased estimations and erroneous estimations especially for highly nonlinear dynamic systems due to its crude linearization scheme. To overcome the weak points of the EKF, the UKF was recently developed as a state estimator. Numerical simulation studies have been carried out on nonlinear SDOF system and nonlinear MDOF system. The results from a series of numerical simulations indicate that the UKF is superior to the EKF in the system identification of nonlinear dynamic systems especially highly nonlinear systems.

  • PDF