• Title/Summary/Keyword: State delay controller

Search Result 190, Processing Time 0.024 seconds

Redundancy Management of Brake-by-wire System using a Message Scheduling (메시지 스케줄링을 이용한 Brake-by-wire 시스템의 Redundancy Management)

  • Yune, J. W.;Kim, K. W.;Kim, T. Y.;Kim, J. G.;Lee, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.717-720
    • /
    • 2000
  • Event-driven communication protocols such as CAN(Controller Area Network) have inherent packet delays due to the contention process for the use of network medium. These delays are stochastic in nature because most packets arrive at random time instants. The stochastic property of the delay adversely influences the control system's performance in terms of stability, responsiveness and steady-state error. Another problem for safety-critical application such as brake-by-wire systems is the reliability of the communication modules that can fail abruptly. This paper deals with two methods to overcome the above problems : (i) scheduling method that can maintain packet delays under some acceptable level, and (ii) redundancy management of communication modules that prescribes dual-redundancy modules' behavior when one of them fails.

  • PDF

A Study on the Stabilization Control of Nonlinear Systems using RVEGA SMC (RVEGA SMC를 이용한 비선형 시스템의 안정화 제어)

  • Kim, Tae-Woo;Jo, Hyun-Woo;Song, Ho-Shin;Lee, Oh-Keol;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2624-2626
    • /
    • 2000
  • The stabilization controls of coupled tank system and ball-beam system are difficult control tasks because of their high order time delay, nonlinearity and structural unstability. Fuhermore, a series of classical methods such as a conventional PID and a full state feedback controller(FSFC) based on the local linearizations have narrow stabilizable regions. Therefore, in this paper, in order to stabilize two representative nonlinear system mentioned above, a Sliding Mode Controller based on a Real Variable Elitist Genetic Algorithm(RVEGA SMC) was proposed.

  • PDF

Intelligent Digital Redesign for Continuous-Time TS Fuzzy Systems with Input Delay (입력 지연 TS 퍼지 시스템의 지능형 디지털 재설계)

  • Lee, Ho-Jae;Park, Jin-Bae;Cha, Dae-Beum;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2117-2119
    • /
    • 2001
  • This paper proposes a novel intelligent digital redesign technique for a class of nonlinear systems represented by input-delayed Takagi-Sugeno (TS) fuzzy systems. The digitally redesigned controller can show good performance provided that the analog controller is well-designed. The developed digital redesign technique is based on the 'state-matching', so the control performance is guaranteed as well as the stability of the system. An simulation example is included to ensure the effectiveness of the proposed method.

  • PDF

$H_\infty$ Controller Design for Discrete-time Linear Systems with Time-varying Delays in States using S-procedure (S-procedure를 이용한 상태에 시변 시간지연을 가지는 이산 선형 시스템에 대한 $H_\infty$ 제어기 설계)

  • Kim, Ki-Tae;Cho, Sang-Hyun;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • This paper deals with the H$_{\infty}$ control problems for discrete-time linear systems with time-varying delays in states. The existence condition and the design method of the H$_{\infty}$ state feedback controller are given. In this paper, the H$_{\infty}$ control law is assumed to be a memoryless state feedback, and the upper-bound of time-varying delay and S-procedure are used. Through some changes of variables and Schur complement, the obtained sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.

Methods for Adding Demand Response Capability to a Thermostatically Controlled Load with an Existing On-off Controller

  • Jin, Young Gyu;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.755-765
    • /
    • 2015
  • A thermostatically controlled load (TCL) can be one of the most appropriate resources for demand response (DR) in a smart grid environment. DR capability can be effectively implemented in a TCL with various intelligent control methods. However, because traditional on-off control is still a commonly used method in a TCL, it is useful to develop a method for adding DR capability to the TCL with an existing on-off controller. As a specific realization of supervisory control for implementing DR capability in the TCL, two methods are proposed - a method involving the changing of a set point and a method involving the paralleling of an identified system without delay. The proposed methods are analyzed through the simulations with an electric heater for different power consumption levels in the on-state. Considerable cost benefit can be achieved with the proposed methods when compared with the case without DR. In addition, the observations suggest that a medium power consumption level, instead of the maximum power, in the on-state should be used for consistently obtaining the cost benefit without severe temperature deviation from the specified temperature range for DR.

A Development of Intelligent Controller for Phase Control in Main Circuit Breaker (주회로차단기 투입전원 위상제어를 위한 지능형 제어기 개발)

  • Oh, Yong-Kuk;Kim, Jae-Won;Ryu, Joon-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.755-761
    • /
    • 2017
  • In railways powered by AC power, the main circuit breaker (MCB) is used for supplying the electric power to the catenary of the vehicle. Generally, the main circuit breaker is located between the pantograph and the main transformer, and the phase of the power applied to the vehicle changes according to the operation timing of the main circuit breaker. The operation of the main circuit breaker should be actively controlled according to the phase of the power source, since the phase of the power causes unintended transient states in the vehicle's electrical system in the form of an inrush current and surge voltage. However, the MCB has a delay time when it operates which is not constant. Therefore, an intelligent controller is needed to predict the operation delay time and control the opening and closing of the MCB.

Robust H∞ Fuzzy Control for Discrete-Time Nonlinear Systems with Time-Delay (시간 지연을 갖는 이산 시간 비선형 시스템에 대한 H∞ 퍼지 강인 제어기 설계)

  • Kim Taek Ryong;Park Jin Bae;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.324-329
    • /
    • 2005
  • In this paper, a robust $H\infty$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagj-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear system with time-delayed state. Then, the parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H\infty$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique. We have shown the effectiveness and feasibility of the proposed method through the simulation.

Guaranteed Cost Controller Design Method for Singular Systems with Time Delays using LMI (선형행렬부등식을 이용한 시간지연 특이시스템의 보장비용 제어기 설계방법)

  • 김종해
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.99-108
    • /
    • 2003
  • This paper is concerned with the problem of designing a guaranteed cost state feedback controller for singular systems with time-varying delays. The sufficient condition for the existence of guaranteed cost controller, the controller design method, and the optimization problem to get the upper bound of guaranteed cost function are proposed by LMI(linear matrix inequality), singular value decomposition, Schur complements, and change of variables. Since the obtained sufficient conditions can be changed to LMI form, all solutions including controller gain and the upper bound of guaranteed cost function can be obtained simultaneously. Moreover, the proposed controller design method can be extended to the problem of robust guaranteed cost controller design method for singular systems with parameter uncertainties and time-varying delays. The validity of the proposed design algorithm is investigated through a numerical example.

Development of reliable $H_\infty$ controller design algorithm for singular systems with failures (고장 특이시스템의 신뢰 $H_\infty$ 제어기 설계 알고리듬 개발)

  • 김종해
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.29-37
    • /
    • 2004
  • This paper provides a reliable H$_{\infty}$ state feedback controller design method for delayed singular systems with actuator failures occurred within the prescribed subset. The sufficient condition for the existence of a reliable H$_{\infty}$ controller and the controller design method are presented by linear matrix inequality(LMI), singular value decomposition, Schur complements, and changes of variables. The proposed controller guarantees not only asymptotic stability but also H$_{\infty}$ norm bound in spite of existence of actuator failures. Since the obtained sufficient condition can be expressed as an LMI fen all variables can be calculated simultaneously. Moreover, the controller design method can be extended to the problem of robust reliable H$_{\infty}$ controller design method for singular systems with parameter uncertainties, time-varying delay, and actuator failures. A numerical example is given to illustrate the validity of the result.

Delay-range-dependent Stability Analysis and Stabilization for Nonlinear Systems : T-S Fuzzy Model Approach (비선형 시스템의 시간 지연 간격에 종속적인 안정도 분석 및 제어기 설계: TS 퍼지 모델 적용)

  • Song, Min-Kook;Park, Jin-Bae;Kim, Jin-Kyu;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.337-342
    • /
    • 2009
  • This paper concerns delay-range-dependent robust stability and stabilization for time-delay nonliner system via T-S fuzzy model approach. The time delay is assumed to be a time-varying continuous function belonging to a given range. On the basis of a novel Lyapunov-Krasovskii functional, which includes the information of the range, delay-range-dependent stability criteria are established in terms of linear matrix inequality. It is shown that the new criteria can provide less conservative results than some existing ones. Moreover, the stability criteria are also used to design the stabilizing state-feedback controllers. Numerical examples are given to demonstrate the applicability of the proposed approach.