• Title/Summary/Keyword: State Of Charge

Search Result 1,195, Processing Time 0.03 seconds

The Effect of Needle Electrode in the Static Charge Elimination Methods for Streaming-Electrification Insulating Oil (유동 대전된 절연유의 제전 방식중 침전극 삽입의 영향(II))

  • Cho, Y.K.;Kim, Y.W.;Lim, H.C.;Kim, D.S.;Shin, Y.D.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.624-626
    • /
    • 1993
  • The Electrical Charge generated by friction in flowing insulating oil can create hazadous accidents. Neutralization of static charges in the oil during transportation is an obvious method of overcoming the problem of internal electric charge. It is known that SCR(Static Charge Reducer) can neutralize much of this charge by the needle electrode and mixing it with the original charge. In our experiment, a filter to generate static charge was set just befor a measurement pipe, and streaming current from the filter to the earth $I_s$, current from the electrode to the earth $I_e$ and current from the receiving tank to the earth $I_f$ were measured in a steady state. As a result, charge density and needle electrode current increases with increasing of oil temperature. Charge elimination rate decreases with increasing of oil flow rate, and increases with increases of oil temperature. Faraday Cage current decreases with increasing of oil temperature.

  • PDF

Preliminary Study on the Measurement of the Electrostatic Charging State of PM2.5 Collected on Filter Media

  • Okuda, Tomoaki;Yoshida, Tetsuro;Gunji, Yuma;Okahisa, Shunichi;Kusdianto, K.;Gen, Masao;Sato, Seiichi;Lenggoro, I. Wuled
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.137-145
    • /
    • 2015
  • This study focused on the measurement of the actual charging state of ambient aerosol particles, which is important for understanding the intricate process of adverse health effects caused by particulate matter (PM). The net electrostatic charging state of $PM_{2.5}$ collected on filter media was measured in this study. The Faraday cage method and surface potential measurements were used in this study. The results showed that the polarities of the net charging state measured using these two methods were in agreement for 42 out of 48 samples (87.5%), and 36 samples (75%) were negatively charged. The filters were not significantly charged by friction between the filters and air not containing PM. Charge addition to or leakage from the filters was not observed over a two-month storage period. Net charging state of $PM_{2.5}$ collected on the filters was concluded to be negative in most cases, based on data's support of the assumption that aerosol charging state is not altered by the process of PM collection using filter.

Development of Voltage Regulator and Pulse Charger Using Pulse Current for Reuse of the Waste Lead Acid Battery (폐납축전지 재활용을 위한 펄스전류에 의한 전압조정기와 펄스충전기의 개발)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.2
    • /
    • pp.65-73
    • /
    • 2007
  • In this study, the pulse charger and voltage regulator are proposed that can reuse the waste lead acid battery. The first we develop the voltage regulator that can reuse the waste lead battery. And the pulse current is applied to the terminal of the waste lead acid battery. The voltage regulator is available principle of the pulse current which can reduce the sulfate to incipient material such as Pb and PbO2. Therefore the internal resistance of the lead acid battery is decreased, the performance of the lead acid battery is improved and the durability is prolonged. The second we develop the pulse charger using the voltage regulator. The pulse charger uses the switch mode of the forward convert method. The pulse charger maintain the constant voltage in state removing the lead acid battery and when it connected the pulse charger, it is converted the charge mode of the constant current immediately. It continues the rapid charge until the full state of the lead acid battery. After that the pulse charger is converted to the charge mode of constant voltage automatically, and then it continues the normal charge. The experiment results show that the effectiveness of the voltage regulator and pulse charger such as the good performance and the prolonged durability in lead acid battery of the small and large capacity.

Discrimination of neutrons and gamma-rays in plastic scintillator based on spiking cortical model

  • Bing-Qi Liu;Hao-Ran Liu;Lan Chang;Yu-Xin Cheng;Zhuo Zuo;Peng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3359-3366
    • /
    • 2023
  • In this study, a spiking cortical model (SCM) based n-g discrimination method is proposed. The SCM-based algorithm is compared with three other methods, namely: (i) the pulse-coupled neural network (PCNN), (ii) the charge comparison, and (iii) the zero-crossing. The objective evaluation criteria used for the comparison are the FoM-value and the time consumption of discrimination. Experimental results demonstrated that our proposed method outperforms the other methods significantly with the highest FoM-value. Specifically, the proposed method exhibits a 34.81% improvement compared with the PCNN, a 50.29% improvement compared with the charge comparison, and a 110.02% improvement compared with the zero-crossing. Additionally, the proposed method features the second-fastest discrimination time, where it is 75.67% faster than the PCNN, 70.65% faster than the charge comparison and 38.4% slower than the zero-crossing. Our study also discusses the role and change pattern of each parameter of the SCM to guide the selection process. It concludes that the SCM's outstanding ability to recognize the dynamic information in the pulse signal, improved accuracy when compared to the PCNN, and better computational complexity enables the SCM to exhibit excellent n-γ discrimination performance while consuming less time.

Speed Improvement of an FTICR Mass Spectra Analysis Program by Simple Modifications

  • Jeon, Sang-Hyun;Chang, Hyeong-Soo;Hur, Man-Hoi;Kwon, Kyung-Hoon;Kim, Hyun-Sik;Yoo, Jong-Shin;Kim, Sung-Hwan;Park, Soo-Jin;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2061-2065
    • /
    • 2009
  • Two simple algorithm modifications are made to the THRASH data retrieval program with the aim of improving analysis speed for complex Fourier transform ion cyclotron resonance (FTICR) mass spectra. Instead of calculating the least-squares fit for every charge state in the backup charge state determination algorithm, only some charge states are pre-selected based on the plausibility values obtained from the FT/Patterson analysis. Second, a modification is made to skip figure-of-merit (FOM) calculations in the central m/z region between two neighboring peaks in isotopic cluster distributions, in which signal intensities are negligible. These combined modifications result in a significant improvement in the analysis speed, which reduces analysis time as much as 50% for ubiquitin (8.6 kDa, 76 amino acids) FTICR MS and MS/MS spectra at the reliability (RL) value = 0.90 and five pre-selected charge states with minimal decreases in data analysis quality (Table 3).

Analysis of the Secondary Battery Charge/Discharge System Using State Space Averaging Method (상태공간평균화법에 의한 2차전지 충방전 시스템의 해석)

  • Won, Hwa-Young;Chae, Soo-Yong;Lee, Hyoung-Ju;Kim, Hee-Sun;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.13-15
    • /
    • 2008
  • Charging or discharging secondary batteries such as a lithium-ion battery is essential in the stage of production and takes long time over two hours. And the charge/discharge system is operated with high switching frequency over several tens kHz. Therefore, to simulate such a system in the conventional way takes very long time and huge files are produced. Finally, the simulation would be unable with general PC class. In this paper, the lithium-ion battery charge/discharge system is analyzed by using state space averaging method. As a result, the simulation time is reduced dramatically and the charge/- discharge characteristics of the lithium-ion battery can be observed.

  • PDF

3D Visualization of Packing Behavior of Charge Material (장입재 충전 거동의 3차원 시각화)

  • Sang-Hwan Lee
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.347-357
    • /
    • 2022
  • In this study, 3D visualization of the packing behavior of the charge material in a foundry was attempted. It was simulated based on the practical conditions of the charge material and the melting furnace. It was confirmed whether the 3D visual simulation realistically implements the packing behavior of the manufacturing site. The realistic packing state by the 3D visual simulation was compared with the ideal packing state. It was analyzed in which case the difference between the two packing states occurred. The advantages of applying the 3D visual simulation to the manufacturing process were investigated, and various application plans in the casting industry were proposed.

The Battery Management System for UPS Lead-Acid Battery (UPS용 납축전지를 위한 배터리관리시스템)

  • Seo, Cheol-Sik;Moon, Jong-Hyun;Park, Jae-Wook;Kim, Geum-Soo;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.127-133
    • /
    • 2008
  • This paper presents the battery management system(BMS) for the optimum conditions of the lead-Acid battery in UPS. The proposed system control the currents and voltages of battery for optimum conditions to estimate the State Of Charge(SOC) in charge or discharge mode. It proved the performance and the algorithm for the estimation of SOC, through the experiments which using the charge and discharge tester and the field tests.

An Intramolecular Photosubstitution Reaction of N-(2,4-Dibromonaphthyl)- arenecarboxamide: Synthesis of 2-Arylnaphthoxazole

  • Bae, In-Soo;Kim, Yoo-Shin;Park, Yong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.916-920
    • /
    • 2003
  • Photoreactions of N-(2,4-dibromonaphthyl)arenecarboxamides in basic medium result in the intramolecular substituted products, 2-aryl-8-bromonaphthoxazoles in moderate yields and further photoreactions of the products afford the reduced products, 2-arylnaphthoxazoles. These reactions are straightforward for syntheses of naphthoxazole derivatives. Since the intramolecular photosubstitution of the bromoarenecarboxamide by the oxygen of its amide group is more effective than the photoreduction of the substituted product, 2-aryl-8- bromonaphthoxazole in basic medium, the intramolecular substituted product, 2-aryl-8-bromonaphthoxazole can be isolated. A charge-transfered excited singlet state of an imidol form of the 2-bromoarenecarboxamide is involved in the photosubstitution, whereas an excited triplet state of the 2-aryl-8-bromonaphthoxzole is closely involved in the photoreduction.

Chemical Substitution Effect on Energetic and Structural Differences between Ground and First Electronically Excited States of Thiophenoxyl Radicals

  • Yoon, Jun-Ho;Lim, Jeong Sik;Woo, Kyung Chul;Kim, Myung Soo;Kim, Sang Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.415-420
    • /
    • 2013
  • Effect of chemical substitution at the para-position of the thiophenoxyl radical has been theoretically investigated in terms of energetics, structures, charge densities and orbital shapes for the ground and first electronically excited states. It is found that the adiabatic energy gap increases when $CH_3$ or F is substituted at the para-position. This change is attributed to the stabilization of the ground state of thiophenoxyl radical through the electron-donating effect of F or $CH_3$ group as the charge or spin of the singly-occupied molecular orbital is delocalized over the entire molecule especially in the ground state whereas in the excited state it is rather localized on sulfur and little affected by chemical substitutions. Quantitative comparison of predictions based on four different quantum-mechanical calculation methods is presented.