• Title/Summary/Keyword: State Classification

Search Result 934, Processing Time 0.03 seconds

Extraordinary State Classification of Grinding Wheel Surface Based on Gray-level Run Lengths (명암도 작용 길이에 따른 연삭 숫돌면의 이상 현상 분류)

  • 유은이;김광래
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.24-29
    • /
    • 2004
  • The grinding process plays a key role which decides the quality of a product finally. But the grinding process is very irregular, so it is very difficult to analyse the process accurately. Therefore it is very important in the aspect of precision and automation to reduce the idle time and to decide the proper dressing time by watching. In this study, we choose the method which can be observed directly by using of computer vision and then apply pattern classification technique to the method of measuring the wheel surface. Pattern classification technique is proper to analyse complicated surface image. We observe the change of the wheel surface by using of the gray level run lengths which are representative in this technique.

Information Extraction and Sentence Classification applied to Clinical Trial MEDLINE Abstracts

  • Hara, Kazuo;Matsumoto, Yuji
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.85-90
    • /
    • 2005
  • In this paper, firstly we report experimental results on applying information extraction (IE) methodology to the task of summarizing clinical trial design information in focus on ‘Compared Treatment’, ‘Endpoint’ and ‘Patient Population’ from clinical trial MEDLINE abstracts. From these results, we have come to see this problem as one that can be decomposed into a sentence classification subtask and an IE subtask. By classifying sentences from clinical trial abstracts and only performing IE on sentences that are most likely to contain relevant information, we hypothesize that the accuracy of information extracted from the abstracts can be increased. As preparation for testing this theory in the next stage, we conducted an experiment applying state-of-the-art sentence classification techniques to the clinical trial abstracts and evaluated its potential in the original task of the summarization of clinical trial design information.

  • PDF

Extraordinary State Discrimination of Grinding Wheel Surface Using Pattern Classification (패턴 분류법을 이용한 연삭 숫돌면의 이상상태 판별)

  • 유은이
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.447-452
    • /
    • 2000
  • The grinding plays a key role which decide the quality of a product finally. But the grinding process is very irregular, so it is very difficult to analyse the process accurately. Therefore it is very important in the aspect of precision and automation to reduce the idle time and to decide the proper dressing time by visualizing. In this study, we choose the direct method of observation by making use of computer vision, and apply pattern classification technique to the method of measuring the wheel surface. Pattern classification technique is proper to analyse complex surface image. We observe the change of the wheel surface by making use of the gray level run lengths which are representative prince in this technique.

  • PDF

A review of tree-based Bayesian methods

  • Linero, Antonio R.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.543-559
    • /
    • 2017
  • Tree-based regression and classification ensembles form a standard part of the data-science toolkit. Many commonly used methods take an algorithmic view, proposing greedy methods for constructing decision trees; examples include the classification and regression trees algorithm, boosted decision trees, and random forests. Recent history has seen a surge of interest in Bayesian techniques for constructing decision tree ensembles, with these methods frequently outperforming their algorithmic counterparts. The goal of this article is to survey the landscape surrounding Bayesian decision tree methods, and to discuss recent modeling and computational developments. We provide connections between Bayesian tree-based methods and existing machine learning techniques, and outline several recent theoretical developments establishing frequentist consistency and rates of convergence for the posterior distribution. The methodology we present is applicable for a wide variety of statistical tasks including regression, classification, modeling of count data, and many others. We illustrate the methodology on both simulated and real datasets.

Cardiac Disorder Classification Using Heart Sounds Acquired by a Wireless Electronic Stethoscope (무선 전자청진 심음을 이용한 심장질환 분류)

  • Kwak, Chul;Lee, Yun-Kyung;Kwon, Oh-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.101-102
    • /
    • 2007
  • Heart diseases are critical and should be detected as soon as possible. A stethoscope is a simple device to find cardiac disorder but requires keen experiences in heart sounds. We evaluate a cardiac disorder classifier by using heart sounds recorded by a digital wireless stethoscope developed in this work. The classifier uses hidden Markov models with circular state transition to model the heart sounds. We train the classifier using two kinds of data: One recorded by using our stethoscope and the other sampled from a clean heart sound database. In classification experiments using 165 sound clips, the classifier shows the classification accuracy of 82% in classifying 6 cardiac disorder categories.

  • PDF

High-Reliable Classification of Multiple Induction Motor Faults Using Vibration Signatures based on an EM Algorithm (EM 알고리즘 기반 강인한 진동 특징을 이용한 고 신뢰성 유도 전동기 다중 결함 분류)

  • Jang, Won-Chul;Kang, Myeongsu;Choi, Byeong-Keun;Kim, Jong-Myon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.346-353
    • /
    • 2013
  • Industrial processes need to be monitored in real-time based on the input-output data observed during their operation. Abnormalities in an induction motor should be detected early in order to avoid costly breakdowns. To early identify induction motor faults, this paper effectively estimates spectral envelopes of each induction motor fault by utilizing a linear prediction coding (LPC) analysis technique and an expectation maximization (EM) algorithm. Moreover, this paper classifies induction motor faults into their corresponding categories by calculating Mahalanobis distance using the estimated spectral envelopes and finding the minimum distance. Experimental results shows that the proposed approach yields higher classification accuracies than the state-of-the-art approach for both noiseless and noisy environments for identifying the induction motor faults.

  • PDF

Lightweight image classifier for CIFAR-10

  • Sharma, Akshay Kumar;Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.286-289
    • /
    • 2021
  • Image classification is one of the fundamental applications of computer vision. It enables a system to identify an object in an image. Recently, image classification applications have broadened their scope from computer applications to edge devices. The convolutional neural network (CNN) is the main class of deep learning neural networks that are widely used in computer tasks, and it delivers high accuracy. However, CNN algorithms use a large number of parameters and incur high computational costs, which hinder their implementation in edge hardware devices. To address this issue, this paper proposes a lightweight image classifier that provides good accuracy while using fewer parameters. The proposed image classifier diverts the input into three paths and utilizes different scales of receptive fields to extract more feature maps while using fewer parameters at the time of training. This results in the development of a model of small size. This model is tested on the CIFAR-10 dataset and achieves an accuracy of 90% using .26M parameters. This is better than the state-of-the-art models, and it can be implemented on edge devices.

Deep Convolutional Neural Network with Bottleneck Structure using Raw Seismic Waveform for Earthquake Classification

  • Ku, Bon-Hwa;Kim, Gwan-Tae;Min, Jeong-Ki;Ko, Hanseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • In this paper, we propose deep convolutional neural network(CNN) with bottleneck structure which improves the performance of earthquake classification. In order to address all possible forms of earthquakes including micro-earthquakes and artificial-earthquakes as well as large earthquakes, we need a representation and classifier that can effectively discriminate seismic waveforms in adverse conditions. In particular, to robustly classify seismic waveforms even in low snr, a deep CNN with 1x1 convolution bottleneck structure is proposed in raw seismic waveforms. The representative experimental results show that the proposed method is effective for noisy seismic waveforms and outperforms the previous state-of-the art methods on domestic earthquake database.

Breast Cancer Classification Using Convolutional Neural Network

  • Alshanbari, Eman;Alamri, Hanaa;Alzahrani, Walaa;Alghamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.101-106
    • /
    • 2021
  • Breast cancer is the number one cause of deaths from cancer in women, knowing the type of breast cancer in the early stages can help us to prevent the dangers of the next stage. The performance of the deep learning depends on large number of labeled data, this paper presented convolutional neural network for classification breast cancer from images to benign or malignant. our network contains 11 layers and ends with softmax for the output, the experiments result using public BreakHis dataset, and the proposed methods outperformed the state-of-the-art methods.

Semi-Supervised Learning for Fault Detection and Classification of Plasma Etch Equipment (준지도학습 기반 반도체 공정 이상 상태 감지 및 분류)

  • Lee, Yong Ho;Choi, Jeong Eun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.121-125
    • /
    • 2020
  • With miniaturization of semiconductor, the manufacturing process become more complex, and undetected small changes in the state of the equipment have unexpectedly changed the process results. Fault detection classification (FDC) system that conducts more active data analysis is feasible to achieve more precise manufacturing process control with advanced machine learning method. However, applying machine learning, especially in supervised learning criteria, requires an arduous data labeling process for the construction of machine learning data. In this paper, we propose a semi-supervised learning to minimize the data labeling work for the data preprocessing. We employed equipment status variable identification (SVID) data and optical emission spectroscopy data (OES) in silicon etch with SF6/O2/Ar gas mixture, and the result shows as high as 95.2% of labeling accuracy with the suggested semi-supervised learning algorithm.