• 제목/요약/키워드: State Boundary Surface

검색결과 159건 처리시간 0.027초

결합형 유한요소-경계요소기법을 사용한 PZT4 구형 쉘 형태의 히드로폰 시뮬레이션 (PZT4 spherical shell-typed hydrophone simulation using a coupled FE-BE method)

  • S.S. Jarng
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1998년도 춘계종합학술대회
    • /
    • pp.394-399
    • /
    • 1998
  • This paper describes the application of a coupled finite element-boundary element method to obtain the steady-state response of a hydrophone. The particular structure considered is a flooded piezoelectric spherical shell. The hydrophone is three-dimensionally simulated to transduce an incident plane acoustic pressure onto the outer surface of the sonar spherical shell to electrical potentials on inner and outer surfaces of the shell. The acoustic field formed from the scattered sound pressure is also simulated. And the displacement of the shell caused by the externally incident acosutic pressure is shown in temporal motion. The coupled FE-BE method is described in detail.

  • PDF

Adaptive Sliding Mode Control을 이용한 전기유압식 서어보시스템의 위치제어에 관한 연구 (A Study on the Position Control of Electrohydraulic Servo System Using Adaptive Sliding Mode Control)

  • 현장환;이정오
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.143-157
    • /
    • 1994
  • This paper is concerned with the position control of electrohydraulic servo system under parameter variation. An adaptive sliding mode control which uses the direct parameter estimation scheme, is proposed to design a robust controller for fast and accurate control of the system. It is shown that the adaptive sliding mode control algorithm is robust and effective in attaining fast and accurate position control of system under time-dependent parameter variation. It is also shown experimentally that chattering phenomena in a sliding mode control can significantly be reduced by using boundary layer technique, and that new approach in sliding mode control introducing a term proportional to the distance between the current state and the sliding surface in the control law is effective to obtain fast response and to increase stability of the system. Computer simulation on the dynamic performance of the control system is also presented.

  • PDF

Non-Destructive Detection of Hydride Blister in PHWR Pressure Tube Using an Ultrasonic Velocity Ratio Method

  • Cheong Yong-Moo;Lee Dong-Hoon;Kim Sang-Jae;Kim Young-Suk
    • Nuclear Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.369-377
    • /
    • 2003
  • Since Zr-2.5Nb pressure tubes have a high risk for the formation of blisters during their operation in pressurized heavy water reactors, there has been a strong incentive to develop a method for the non-destructive detection of blisters grown on the tube surfaces. However, because there is little mismatch in acoustic impedance between the hydride blisters and zirconium matrix, it is not easy to distinguish the boundary between the blister and zirconium matrix with conventional ultrasonic methods. This study has focused on the development of a special ultrasonic method, so called ultrasonic velocity ratio method for a reliable detection of blisters formed on Zr-2.5Nb pressure tubes. Hydride blisters were grown on the outer surface of the Zr-2.5Nb pressure tube using a cold finger attached to a steady state thermal diffusion equipment. To maximize a difference in the ultrasonic velocity in hydride blisters and the zirconium matrix, the ultrasonic velocity ratio of longitudinal wave to shear wave, $V_L/V_S$, has been determined based on the flight time of the longitudinal echo and reflected shear echo from the outer surface of the tubes. The feasibility of the ultrasonic velocity ratio method is confirmed by comparing the contour plots reproduced by this method with those of the blisters grown on the Zr-2.5Nb pressure tubes.

Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

  • Lee, Kyoung-Rok;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.513-528
    • /
    • 2013
  • A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

충격파관 장치설계를 위한 유동현상의 해석(1)-계산치와 실험치의 비교- (An Analysis of Flow Phenomena in Shock Tube System Design(I)-Comparison of Experimental and Computation Result-)

  • 정진도;수곡행부
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1218-1226
    • /
    • 1994
  • The shock tube is a useful device for investigating shock phenomena, spray combustion, unsteady gas dynamics, etc. Therefore, it is necessary to analyze exactly the flow phenomena in shock tube. In this study, the mechanics of its reflected shock zone has been investigated by using of the one-dimensional gas dynamic theory in order to estimate the transition from initial reflection of shock wave region. Calulation for four kinds of reflected shock tube temperature (i.e. (a) 1388 K (b) 1276 K (c) 1168 K (d) 1073 K) corresponding to the experimental conditions have been carried out sumarized as follows. (1) The qualitative tendency is almost the same as in that conditions in region of reflected wave region. (2) High temperature period (reflected shock wave temperature) $T_{5}$, exists 0-2.65 ms. (3) Transition period from temperature of reflection shock wave is far longer than the calculated one. This principally attributed to the fact that the contact surface is accelerated, also, due to the release of energy by viscoity effect. This apparatus can advance the ignition process of a spray in a ideal condition that involved neither atomization nor turbulent mixing process, where, using a shock tube, a column of droplets freely from atomizer was ignited behind a reflected shock.

빛과 공간의 변전에 관한 연구 (A Study on the Relation between Light and Ever-changing Space)

  • 홍승대
    • 한국디지털건축인테리어학회논문집
    • /
    • 제8권1호
    • /
    • pp.65-74
    • /
    • 2008
  • Light creates ambiance that affects our impression of space. Before the modern age, the role of light is a religious factor and a primitive state to see. In the modern space design, light is used to achieve the continuous transformation and translation of building's image. Ever-changing space is a flexible corresponding of space to its environment, caused by certain dynamic light. The space turn into some other thing from what it was before, or just changing its character. approaching men and society with different meanings. The purpose of this study is to explore the relation between light(natural and artificial) and ever-changing space through the case study. The impacts of light on ever-changing in today's space design can be summarized as follows. 1) Materialization of light in space design. Nowadays light becomes a form itself. The geometric properties of the space form playa secondary role as compared to the importance assigned to light. 2) Pixelization of space by a light effect. The impacts of digital technology on the space design have come through enhancing the 'pixelization' of the surface from which buildings are made their responsiveness and adaptability to changing needs. The surface with ever-changing lights that blur the boundary of space and expand the image of space.

  • PDF

한계상태 간격비를 이용한 구성모델 (A Constitutive Model Using the Spacing Ratio of Critical State)

  • 이승래;오세붕;관기철
    • 한국지반공학회지:지반
    • /
    • 제8권2호
    • /
    • pp.45-58
    • /
    • 1992
  • 지반재료의 탄소성 구성 모델은 유연성과 안정성을 동시에 만족하여야 공학적으로 의미를 가지며 실용적으로 사용될 수 있다. 본 연구에서는 안정성이 있는 계수를 사용하는 수정 Cam-clay 모델을 근간으로, 한계상태 간격비를 계수로 도입하여 더욱 유연성이 있는 모델을 제안하였다. 한계상태 간격비는 추가적인 실험없이 간편하게 구할 수 있으며 특히 비배수 전단거동에 대하여 실용적으로 사용될 수 있다. 제안된 모델은 비 배수전단 삼축압축시험에 대하여 응력경로 및 응 력-변형률관계를 수정 Cam-clay 모델에 비하여 매우 정확하게 예측할 수 있었다. 뿐만 아니라 전단변형률 속도, 크리프 및 응력이완의 영향을 고려할 수 있었다. 특히 실제의 상태경계면을 표현 탄성 -완전소성모델, 사용해야 삼축압축시험중 비 배수시험이 W W 삼축압축시험시 전단시험을 논문에서 해석한 점토질 지반의 거동에 대하여 관련유동칙을 따른다는 가정이 잘 적용되기 때문이라고 판단된다.

  • PDF

DFT Study for Adsorption and Decomposition Mechanism of Trimethylene Oxide on Al(111) Surface

  • Ye, Cai-Chao;Sun, Jie;Zhao, Feng-Qi;Xu, Si-Yu;Ju, Xue-Hai
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.2013-2018
    • /
    • 2014
  • The adsorption and decomposition of trimethylene oxide ($C_3H_6O$) molecule on the Al(111) surface were investigated by the generalized gradient approximation (GGA) of density functional theory (DFT). The calculations employed a supercell ($6{\times}6{\times}3$) slab model and three-dimensional periodic boundary conditions. The strong attractive forces between $C_3H_6O$ molecule and Al atoms induce the C-O bond breaking of the ring $C_3H_6O$ molecule. Subsequently, the dissociated radical fragments of $C_3H_6O$ molecule oxidize the Al surface. The largest adsorption energy is about -260.0 kJ/mol in V3, V4 and P2, resulting a ring break at the C-O bond. We also investigated the decomposition mechanism of $C_3H_6O$ molecules on the Al(111) surface. The activation energies ($E_a$) for the dissociations V3, V4 and P2 are 133.3, 166.8 and 174.0 kJ/mol, respectively. The hcp site is the most reactive position for $C_3H_6O$ decomposing.

세장형 몸체의 고받음각 기동에서 발생하는 비대칭와류에 관한 실험적 연구 (An Experimental Study of Asymmetric Vortices around Slender Bodies during High Angle of Attack Maneuver)

  • 전영진;서형석;최원혁;변영환;이재우
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.71-76
    • /
    • 2008
  • 본 연구에서는 아음속 영역에서 유도무기의 일반적 형상인 세장형 몸체를 갖는 서로 다른 선두부 형상의 두 모델을 이용하여 받음각에 다른 세장형 모델 윗면의 압력 분포를 측정하였다. 아음속 영역에서 서로 다른 선두부 형상을 갖는 두 모델의 받음각에 따른 공력실험 결과로 특정 받음각에서의 측력 및 요잉모멘트가 최대가 되는 것을 확인하였으며 비대칭 정상상태와 비대칭 비정상상태의 경계를 알 수 있었다. 또한 시간에 따른 측력, 항력 및 요잉모멘트의 결과로 같은 받음각이라도 선두부의 형상에 따라 안정성이 다른 결과를 보였다. 받음각에 따른 세장형 몸체 표면 압력 분포를 측정한 결과 받음각이 증가할수록 표면압력 분포는 비대칭적으로 형성됨을 알 수 있었다.

  • PDF

원심 압축기의 임펠러 원판 마찰 손실에 대한 CFD 해석 (CFD analysis of the Disk Friction Loss on the Centrifugal Compressor Impeller)

  • 김현엽;조이상;조진수
    • 한국항공우주학회지
    • /
    • 제39권7호
    • /
    • pp.596-604
    • /
    • 2011
  • 원심 압축기의 원판 마찰 손실은 동력 손실의 한 종류로써, 원심 압축기의 전체 효율 향상을 위해 원판 마찰 손실을 줄여야 한다. 본 연구에서는 원심 압축기의 임펠러 디스크 면과 케이싱 사이의 축 간격 및 표면 조도 변화에 따른 원판 마찰 손실을 분석하였고, 원판마찰손실 저감을 위한 새로운 이론식을 제안하고자 한다. 원심 압축기 임펠러의 정상상태 해석을 위해서 상용 전산해석 코드인 FLUENT의 회전 좌표계와 2-equation k-${\omega}$ SST 모델을 사용하였다. CFD 해석 결과, 원심압축기 임펠러의 원판 마찰 손실은 축 간격의 변화보다는 표면조도의 변화에 더 큰 영향을 받는 것으로 분석되었다. 원심압축기 임펠러의 원판 마찰 손실을 최소화하기 위해서 축 간격은 이론적인 경계층 두께와 동일하도록 설정하고 표면조도는 최소화해야 한다.