DOI QR코드

DOI QR Code

CFD analysis of the Disk Friction Loss on the Centrifugal Compressor Impeller

원심 압축기의 임펠러 원판 마찰 손실에 대한 CFD 해석

  • 김현엽 (한양대학교 항공공학과 대학원) ;
  • 조이상 (한양대학교 기계공학부) ;
  • 조진수 (한양대학교 기계공학부)
  • Received : 2010.12.02
  • Accepted : 2011.06.16
  • Published : 2011.07.01

Abstract

To improve the total efficiency of centrifugal compressor, it is necessary to reduce the disk friction loss, which is defined as the power loss. In this study, the disk friction loss due to the axial clearance and the surface roughness effect is analyzed and proposed the new empirical equation for the reduction of the disk friction loss. The rotating reference frame technique and the 2-equation k-${\omega}$ SST model using commercial CFD code FLUENT is used for the steady-state analysis of the centrifugal compressor impeller. According to CFD results, the disk friction loss of the impeller is more affected by the surface roughness than the change of the axial clearance. For the minimization of the disk friction loss on the centrifugal compressor impeller, the magnitude of the axial clearance should be designed to the same size compare with theoretical boundary layer thickness and the surface roughness should be minimized.

원심 압축기의 원판 마찰 손실은 동력 손실의 한 종류로써, 원심 압축기의 전체 효율 향상을 위해 원판 마찰 손실을 줄여야 한다. 본 연구에서는 원심 압축기의 임펠러 디스크 면과 케이싱 사이의 축 간격 및 표면 조도 변화에 따른 원판 마찰 손실을 분석하였고, 원판마찰손실 저감을 위한 새로운 이론식을 제안하고자 한다. 원심 압축기 임펠러의 정상상태 해석을 위해서 상용 전산해석 코드인 FLUENT의 회전 좌표계와 2-equation k-${\omega}$ SST 모델을 사용하였다. CFD 해석 결과, 원심압축기 임펠러의 원판 마찰 손실은 축 간격의 변화보다는 표면조도의 변화에 더 큰 영향을 받는 것으로 분석되었다. 원심압축기 임펠러의 원판 마찰 손실을 최소화하기 위해서 축 간격은 이론적인 경계층 두께와 동일하도록 설정하고 표면조도는 최소화해야 한다.

Keywords

References

  1. Sayers, A. T., Hydraulic and compressible flow turbomachines, McGraw-Hill, 1990.
  2. 오형우, 정명균, "원심 압축기의 성능 예측," 한국자동차공학회논문집, 제5권 제2호, 1997, pp. 136-148.
  3. Whittle, F., "The early history of whittle jet propulsion gas turbine", Proceedings of the institution of mechanical engineers, 152, 1945, pp. 419-35. https://doi.org/10.1243/PIME_PROC_1945_152_071_02
  4. Cheshire, L. J., "The design and development of centrifugal compressors for aircraft gas turbines", Proceedings of the institution of mechanical engineers, 153, 1945, pp. 426-433. https://doi.org/10.1243/PIME_PROC_1945_153_048_02
  5. Saravanamutto, H. I. H., Rogers, G. F. C., Cohen, H., Gas turbine theory, Prentice Hall, 2008.
  6. 강정식, 임병준, 차봉분, 양수석, "원심압축기의 기술동향," 항공우주산업기술동향, 2권 1호, 2004, pp. 64-69.
  7. Dennis G. S., Principals of Turbomachinery, Macmilan, 1950.
  8. Zimmermann, H., "Friction Losses and Flow Distribution for Rotating Disks With Shielded and Protruding Bolts", ASME, Journal of Engineering for Gas Turbines and Power, Vol. 108, 1986, pp. 547-552. https://doi.org/10.1115/1.3239945
  9. Wild, P. M., Dijlali, N., and Vickers, G. W., "Experimental and Computational Assessment of Windage Losses in Rotating Machinery", ASME Trans. J. Fluids Eng., Vol. 118, 1996, pp. 116-122. https://doi.org/10.1115/1.2817488
  10. Gulich, J. F., "Disk Friction Losses of Closed Turbomachine Impeller", Forsch Ingenieurwes, 2009, pp. 68:87-95.
  11. William, W. P., Fundamentals of turbomachinery, Wiley, Canada, 2008.
  12. Gulich, J. F., Centrifugal Pumps, 2nd Ed., Springer, 2010.
  13. Stepanoff, A. J., Turboblowers: theory, design, and application of centrifugal and axial flow compressors and fans, Wiley, 1955.
  14. White. F. M., Viscous fluid flow, McGraw-Hill, Inc., 1991.
  15. Poullikkas, A., "Surface Roughness Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Discs", Transactions of the ASME, Journal of Fluids Engineering, Vol. 117, 1995, pp. 526-528. https://doi.org/10.1115/1.2817294
  16. Nemdili, A., and Hellmann, D. H., "Development of an empirical equation to predict the disc friction loss of a centrifugal pump", Scientific Bulletin of the Politehnica University of Timisoara, 2004, pp. 235-240.
  17. Nemdili, A., and Hellmann, D. H., "Investigations on fluid friction of rotational disks with and without modified outlet sections in real centrifugal pump casing", Forsch Ingenieurwes, 2007, pp. 71:59-67.
  18. FLUENT 6.3 User' Guide, Fluent Inc., 2006, pp. 10-4, 29-4.
  19. Anderson, J. D. Jr, Computational Fluid Dynamics, The Basic with Applications, McGraw-Hill, 1995, pp. 82-94.
  20. Menter, F. R., "Two-equation eddy viscosity turbulence models for engineering applications", AIAA Journal, Vol. 32, No. 8, pp. 1598-1605.
  21. Daily, J. W., and Nece, R. E., "Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Discs", ASME Journal of Basic Engineering, Vol. 82, No. 1, 1960, pp. 217-232. https://doi.org/10.1115/1.3662532