• Title/Summary/Keyword: State Approximation

Search Result 399, Processing Time 0.029 seconds

NON-GREY RADIATIVE TRANSFER IN THE PHOTOSPHERIC CONVECTION : VALIDITY OF THE EDDINGTON APPROXIMATION

  • BACH, KIEHUNN
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The aim of this study is to describe the physical processes taking place in the solar photosphere. Based on 3D hydrodynamic simulations including a detailed radiation transfer scheme, we investigate thermodynamic structures and radiation fields in solar surface convection. As a starting model, the initial stratification in the outer envelope calculated using the solar calibrations in the context of the standard stellar theory. When the numerical fluid becomes thermally relaxed, the thermodynamic structure of the steady-state turbulent flow was explicitly collected. Particularly, a non-grey radiative transfer incorporating the opacity distribution function was considered in our calculations. In addition, we evaluate the classical approximations that are usually adopted in the onedimensional stellar structure models. We numerically reconfirm that radiation fields are well represented by the asymptotic characteristics of the Eddington approximation (the diffusion limit and the streaming limit). However, this classical approximation underestimates radiation energy in the shallow layers near the surface, which implies that a reliable treatment of the non-grey line opacities is crucial for the accurate description of the photospheric convection phenomenon.

An Approximation for the System Size of M/G/c Queueing Systems (M/G/c 대기행렬시스템의 대기고객수 분석에 대한 근사법)

  • Hur, Sun;Lee, Ho-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.2
    • /
    • pp.59-66
    • /
    • 2000
  • In this paper we propose an approximation analysis for the system size distribution of the M/G/c system which is transform-free,. At first we borrow the system size distribution from the Markovian service models and then introduce a newly defined parameter in place of traffic intensity. In this step we find the distribution of the number of customers up to c. Next we concentrate on each waiting space of the queue separately rather than consider the entire queue as a whole. Then according to the system state of the arrival epoch we induce the probability distribution of the system size recursively. We discuss the effectiveness of this approximation method by comparing with simulation for the mean system size.

  • PDF

A Study on a Mathematical Model of the Long-term Track Tamping Scheduling Problem (도상 다짐작업의 장기 일정계획 문제에 관한 수리적 모형 고찰)

  • Oh Seog-Moon;Lee Jeeha;Lee Hee-Up;Park Bum Hwan;Hong Soon-Heum
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.50-56
    • /
    • 2006
  • This paper presents a mathematical model of the long-term track tamping scheduling problem in the Korean highspeed railway system. The presented model encompasses various operational field constraints, moreover improves a state-of-the-art model in extending the feasible space. We show the model is sized up to intractable scale, then propose another approximation model that is possible to handle with the present computer system and commercial optimization package, directly. The aggregated index, lot, is selected, considering the resolution of the planning horizon as well as scheduling purpose. Lastly, this paper presents two test results for the approximation model. The results expose the approximation model to quite promising in deploying it into an operational software program for the long-term track tamping scheduling problem.

A study on the Hankel approximation of input delay systems (입력 시간지연 시스템의 한켈 근사화에 관한 연구)

  • Hwang, Lee-Cheol;Ha, Hui-Gwon;Lee, Man-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.308-314
    • /
    • 1998
  • This paper studies the problem of computing the Hankel singular values and vectors in the input delay systems. It is shown that the Hankel singular values are solutions to a transcendental equation and the Hankel singular vectors are obtained from the kernel of the matrix. The computation is carried out in state space framework. Finally, Hankel approximation of a simple example shows the usefulness of this study.

  • PDF

A Nonlinear Navigation Filter for Biomimetic Robot (생체모방 로봇을 위한 비선형 항법 필터)

  • Seong, Sang-Man
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.175-180
    • /
    • 2012
  • A nonlinear navigation filter for biomimetic robot using analytic approximation of mean and covariance of state variable is proposed. The approximations are performed at the time update step in the filter structure. The mean is approximated to the 3rd order of Taylor's series expansion of true mean and the covariance is approximated to the 3rd order either. The famous EKF is a nonlinear filtering method approximating the mean to 1st order and the covariance to the 3rd order. The UKF approximate them to the higher orders by numerical method. The proposed method derived a analytical approximation of them for navigation system and therefore don't need so called sigma point transformation in UKF. The simulation results show that the proposed method can be a good alternative of UKF in the systems which require less computational burden.

Design of A Controller Using Successive Approximation for Weakly Coupled Bilinear Systems

  • Chang, Jae-Won;Kim, Young-Joong;Kim, Beom-Soo;Lim, Myo-Taeg
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.33-38
    • /
    • 2002
  • In this paper, the infinite time optimal regulation problem for weakly coupled bilinear systems with quadratic performance criteria is obtained by a sequence of algebraic Lyapunov equations. This is the new approach is based on the successive approximation. In particular, the order reduction is achieved by using suitable state transformation so that the original Lyapunov equations are decomposed into the reduced-order local Lyapunov equations. The proposed algorithms not only solve optimal control problems in the weakly coupled bilinear system but also reduce the computation time. This paper also includes an example to demonstrate the procedures.

  • PDF

A new high-order response surface method for structural reliability analysis

  • Li, Hong-Shuang;Lu, Zhen-Zhou;Qiao, Hong-Wei
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.779-799
    • /
    • 2010
  • In order to consider high-order effects on the actual limit state function, a new response surface method is proposed for structural reliability analysis by the use of high-order approximation concept in this study. Hermite polynomials are used to determine the highest orders of input random variables, and the sampling points for the determination of highest orders are located on Gaussian points of Gauss-Hermite integration. The cross terms between two random variables, only in case that their corresponding percent contributions to the total variation of limit state function are significant, will be added to the response surface function to improve the approximation accuracy. As a result, significant reduction in computational cost is achieved with this strategy. Due to the addition of cross terms, the additional sampling points, laid on two-dimensional Gaussian points off axis on the plane of two significant variables, are required to determine the coefficients of the approximated limit state function. All available sampling points are employed to construct the final response surface function. Then, Monte Carlo Simulation is carried out on the final approximation response surface function to estimate the failure probability. Due to the use of high order polynomial, the proposed method is more accurate than the traditional second-order or linear response surface method. It also provides much more efficient solutions than the available high-order response surface method with less loss in accuracy. The efficiency and the accuracy of the proposed method compared with those of various response surface methods available are illustrated by five numerical examples.

Simulation of stationary Gaussian stochastic wind velocity field

  • Ding, Quanshun;Zhu, Ledong;Xiang, Haifan
    • Wind and Structures
    • /
    • v.9 no.3
    • /
    • pp.231-243
    • /
    • 2006
  • An improvement to the spectral representation algorithm for the simulation of wind velocity fields on large scale structures is proposed in this paper. The method proposed by Deodatis (1996) serves as the basis of the improved algorithm. Firstly, an interpolation approximation is introduced to simplify the computation of the lower triangular matrix with the Cholesky decomposition of the cross-spectral density (CSD) matrix, since each element of the triangular matrix varies continuously with the wind spectra frequency. Fast Fourier Transform (FFT) technique is used to further enhance the efficiency of computation. Secondly, as an alternative spectral representation, the vectors of the triangular matrix in the Deodatis formula are replaced using an appropriate number of eigenvectors with the spectral decomposition of the CSD matrix. Lastly, a turbulent wind velocity field through a vertical plane on a long-span bridge (span-wise) is simulated to illustrate the proposed schemes. It is noted that the proposed schemes require less computer memory and are more efficiently simulated than that obtained using the existing traditional method. Furthermore, the reliability of the interpolation approximation in the simulation of wind velocity field is confirmed.

Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem

  • Li, Tan;Qi, Zhaohui;Ma, Xu;Chen, Wanji
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.393-417
    • /
    • 2015
  • In this paper an 8-node quadrilateral assumed stress hybrid Mindlin plate element with $39{\beta}$ is presented. The formulation is based on complementary energy principle. The proposed element is free of shear locking and is capable of passing all the patch tests, especially the non-zero constant shear enhanced patch test. To accomplish this purpose, special attention is devoted to selecting boundary displacement interpolation and stress approximation in domain. The arbitrary order Timoshenko beam function is successfully used to derive the boundary displacement interpolation. According to the equilibrium equations, an appropriate stress approximation is rationally derived. Particularly, in order to improve element's accuracy, the assumed stress field is derived by employing $39{\beta}$ rather than conventional $21{\beta}$. The resulting element can be adopted to analyze both moderately thick and thin plates, and the convergence for the very thin case can be ensured theoretically. Excellent element performance is demonstrated by a wide of experimental evaluations.

A study on the analysis and design of the chopper fed DC Motor control system using state space averaging method (상태평균화법에 의한 직류초퍼구동 DC모터 제어시스템의 해석과 설계에 관한 연구)

  • Yu, Gwon-Jong;Kim, Yong-Ju;Kim, Han-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.352-356
    • /
    • 1990
  • In this paper proposed a new analysis method that can be controlled DC separately excited motor using DC chopper. An analysis method can be broadly divided the state variables method and the state space averaging method. The state variable method is largely used for analysis method in the time area, but it is complicated analysis of the nonlinear circuit and modeling of the system. Therefore a boundary of the current continuous mode and discontinuous mode can be definited by the state space averaging method. Also this paper proposed a new approximation analysis method using state space averaging method in the discontinuous mode.

  • PDF