• Title/Summary/Keyword: Starvation Stress

Search Result 75, Processing Time 0.024 seconds

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

Effects of Mixing Performance and Conditioned Medium on hCTLA4Ig Production in Transgenic Rice Cell Suspension Cultures (형질전환 벼 현탁세포 배양에서 혼합효율과 조정배지가 hCTLA4Ig 생산에 미치는 영향)

  • Choi, Hong-Yeol;Park, Jun-Yong;Nam, Hyung-Jin;Gong, Mi-Kyung;Yoo, Ye-Ri;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.307-312
    • /
    • 2015
  • Transgenic rice cells using RAmy3D promoter can provide high productivity, and the production of recombinant protein is induced by sugar starvation. In this system, productivity was reduced during the scale-up processes. To ensure the influences of shear stress and oxygen transfer rate, working volume and mixing performances were investigated under various agitation speeds and working volumes. In addition, inoculation methods including suspended cells and filtered cells were compared. Working volumes and shaking speeds were 300, 450 mL and 80, 120 rpm, respectively. Hydrodynamic environment of each condition was measured numerically like mixing time and $k_La$. Good mixing performance and high shear stress were measured at high agitation speed and low volume. The highest level of hCTLA4Ig was 30.7 mg/L at 120 rpm, 300 mL. When conditioned medium was used for inoculation, increased cell growth was noticed during the day 0~4 and decreased slower than filtered cells. Compared with filtered cells, the maximum hCTLA4Ig level reached 37.8 mg/L at 120 rpm, 300 mL and lower protease activity level was observed. In conclusion mixing performance is critical factor for productivity and conditioned medium can have a positive effect on damaged cells caused by hydrodynamic shear stress.

Stem Cell Properties of Gastric Cancer Stem-Like Cells under Stress Conditions Are Regulated via the c-Fos/UCH-L3/β-Catenin Axis

  • Jae Hyeong Lee;Sang-Ah Park;Il-Geun Park;Bo Kyung Yoon;Jung-Shin Lee;Ji Min Lee
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.476-485
    • /
    • 2023
  • Gastric cancer stem-like cells (GCSCs) possess stem cell properties, such as self-renewal and tumorigenicity, which are known to induce high chemoresistance and metastasis. These characteristics of GCSCs are further enhanced by autophagy, worsening the prognosis of patients. Currently, the mechanisms involved in the induction of stemness in GCSCs during autophagy remain unclear. In this study, we compared the cellular responses of GCSCs with those of gastric cancer intestinal cells (GCICs) whose stemness is not induced by autophagy. In response to glucose starvation, the levels of β-catenin and stemness-related genes were upregulated in GCSCs, while the levels of β-catenin declined in GCICs. The pattern of deubiquitinase ubiquitin C-terminal hydrolase-L3 (UCH-L3) expression in GCSCs and GCICs was similar to that of β-catenin expression depending on glucose deprivation. We also observed that inhibition of UCH-L3 activity reduced β-catenin protein levels. The interaction between UCH-L3 and β-catenin proteins was confirmed, and it reduced the ubiquitination of β-catenin. Our results suggest that UCH-L3 induces the stabilization of β-catenin, which is required to promote stemness during autophagy activation. Also, UCH-L3 expression was regulated by c-Fos, and the levels of c-Fos increased in response to autophagy activation. In summary, our findings suggest that the inhibition of UCH-L3 during nutrient deprivation could suppress stress resistance of GCSCs and increase the survival rates of gastric cancer patients.

Effect of Hippocampectomy on Gastric Ulceration by Predicted Stress (예보된 스트레스에 의한 위궤양 발생에 미치는 뇌 해마 제거의 영향)

  • Kim, Chul;Choi, Hyun;Kim, Chung-Chin;Kim, Jong-Kyu;Kim, Myung-Suk;Park, Hyoung-Jin;Jo, Yang-Hyeok
    • The Korean Journal of Physiology
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 1980
  • This study was under taken to investigate the influences of predictable or unpredictable stress upon gastric ulceration, and the hippocampectomy upon the ulceration order the stressful conditions. Sixty male albino rats(Sprague-Dawley strain) were divided equally into 3 groups: One was the hippocampal group(N=20) which received hippocampal ablation by suction, another was the cortical control group(N =20) which received partial cortical ablation over the hippocampus, and a third was the normal control group(N=20). Each group was further divided into two subgroups: One was the predicted subgroup(N=10) in which animals could predict the imminent stressful stimuli by hearing a sound(1,000 Hz, 2 sec in duration) 3 sec before the onset of the stress, and the other was the unpredicted subgroup(N=10). After starvation for 24 hours, but water ad libitum, each rat received the electric stimulation(3 mA, 60 Hz, 2 sec in duration, and once per minute in average) for 6 hours via a pair of electrodes attached on the tale. The electric stimulation served as the stress causing the gastric ulcer. Five hours after completion of stimulation, the stomach filled with the physiological saline was removed under deep anesthesia and spread out on a small glass plate. The numbers of the ulcer in each stomach were counted and the shape was examined under the dissecting microscope. Results obtained were as follows: 1. The mean numbers of the ulcer of the predicted subgroups were significantly larger than those of the unpredicted subgroups in the normal control and the cortical control groups, but there was no difference between the values of the two subgroups in the hippocampal group. 2. The mean numbers of the ulcer of the predicted subgroups in the normal control and the cortical control groups were larger(but not significant) than that in the hippocampal group. It is inferred from the above results that the prediction of the stress strengthens the effect of the stress on the gastric ulceration, and the hippocampus facilitates the effect of the prediction of the stress.

  • PDF

Nucleotide Sequence on Upstream of the cdd Locus in Bacillus subtilis

  • JONG-GUK KIM;KIM, KYE-WON;SEON-KAP HWANG;JOO-WON SUH;BANG-HO SONG;SOON-DUCK HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.125-131
    • /
    • 1995
  • A 3, 346 bp of the cdd upstream region in Bacillus subtilis was sequenced from the pSO1 (Song BH and J Neuhard. 1989. Mol. Gen. Genet 216: 462-468) and sequence homology was searched to the known genes in Genbank and European Molecular Biology Laboratory databanks. Five complete and one truncated putative coding sequences deduced from the nucleotide sequence were found through the ORF searching by Genetyx and Macvector software, and one of them was identified as the dgk (diacylglycerol kinase) gene and another, a truncated one, as the phoH (phosphate starvation-inducible gene) gene. The B. subtilis dgk gene, having a role for response to several environmental stress signals, revealed an open reading frame of 134 amino acids with 43.1% of sequence identity to the Streptococcus mutans dgk gene. The carboxy terminal 59 residues of the truncated phoH gene showed 52.7% and 34.5% of sequence identity in amino acids with the corresponding genes of Mycobacterium leprae and Escherichia coli. The four remaining coding sequences consisting of 115, 421, 91, and 91 residues were thought to be unknown ORFs because they have no significant similarity to known genes.

  • PDF

Flightless-I Controls Fat Storage in Drosophila

  • Park, Jung-Eun;Lee, Eun Ji;Kim, Jung Kwan;Song, Youngsup;Choi, Jang Hyun;Kang, Min-Ji
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.603-611
    • /
    • 2018
  • Triglyceride homeostasis is a key process of normal development and is essential for the maintenance of energy metabolism. Dysregulation of this process leads to metabolic disorders such as obesity and hyperlipidemia. Here, we report a novel function of the Drosophila flightless-I (fliI) gene in lipid metabolism. Drosophila fliI mutants were resistant to starvation and showed increased levels of triglycerides in the fat body and intestine, whereas fliI overexpression decreased triglyceride levels. These flies suffered from metabolic stress indicated by increased levels of trehalose in hemolymph and enhanced phosphorylation of eukaryotic initiation factor 2 alpha ($eIF2{\alpha}$). Moreover, upregulation of triglycerides via a knockdown of fliI was reversed by a knockdown of desat1 in the fat body of flies. These results indicate that fliI suppresses the expression of desat1, thereby inhibiting the development of obesity; fliI may, thus, serve as a novel therapeutic target in obesity and metabolic diseases.

N-terminal formylmethionine as a novel initiator and N-degron of eukaryotic proteins

  • Kim, Jeong-Mok
    • BMB Reports
    • /
    • v.52 no.3
    • /
    • pp.163-164
    • /
    • 2019
  • The ribosomal synthesis of proteins in the eukaryotic cytosol has always been thought to start from the unformylated N-terminal (Nt) methionine (Met). In contrast, in virtually all nascent proteins in bacteria and eukaryotic organelles, such as mitochondria and chloroplasts, Nt-formyl-methionine (fMet) is the first building block of ribosomal synthesis. Through extensive approaches, including mass spectrometric analyses of the N-termini of proteins and molecular genetic techniques with an affinity-purified antibody for Nt-formylation, we investigated whether Nt-formylated proteins could also be produced and have their own metabolic fate in the cytosol of a eukaryote, such as yeast Saccharomyces cerevisiae. We discovered that Nt-formylated proteins could be generated in the cytosol by yeast mitochondrial formyltransferase (Fmt1). These Nt-formylated proteins were massively upregulated in the stationary phase or upon starvation for specific amino acids and were crucial for the adaptation to specific stresses. The stress-activated kinase Gcn2 was strictly required for the upregulation of Nt-formylated proteins by regulating the activity of Fmt1 and its retention in the cytosol. We also found that the Nt-fMet residues of Nt-formylated proteins could be distinct N-terminal degradation signals, termed fMet/N-degrons, and that Psh1 E3 ubiquitin ligase mediated the selective destruction of Nt-formylated proteins as the recognition component of a novel eukaryotic fMet/N-end rule pathway, termed fMet/N-recognin.

Transcriptome analysis of a transgenic Arabidopsis plant overexpressing CsBCAT7 reveals the relationship between CsBCAT7 and branched-chain amino acid catabolism

  • Kim, Young-Cheon;Lee, Dong Sook;Jung, Youjin;Choi, Eun Bin;An, Jungeun;Lee, Sanghyeob;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • The amino acids found in plants play important roles in protein biosynthesis, signaling processes, and stress responses, and as components in other biosynthesis pathways. Amino acid degradation helps maintain plant cells' energy states under certain carbon starvation conditions. Branched-chain amino acid transferases (BCATs) play an essential role in the metabolism of branched-chain amino acids (BCAAs) such as isoleucine, leucine and valine. In this paper, we performed genome-wide RNA-seq analysis using CsBCAT7-overexpressing Arabidopsis plants. We observed significant changes in genes related to flowering time and genes that are germination-responsive in transgenic plants. RNA-seq and RT-qPCR analyses revealed that the expression levels of some BCAA catabolic genes were upregulated in these same transgenic plants, and that this correlated with a delay in their senescence phenotype when the plants were placed in extended darkness conditions. These results suggest a connection between BCAT and the genes implicated in BCAA catabolism.

Roles of YehZ, a Putative Osmoprotectant Transporter, in Tempering Growth of Salmonella enterica serovar Typhimurium

  • Kim, Seul I;Ryu, Sangryeol;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1560-1568
    • /
    • 2013
  • Salmonella, a main cause of foodborne diseases, encounters a variety of environmental stresses and overcomes the stresses by multiple resistance strategies. One of the general responses to hyperosmotic stress is to import or produce compatible solutes so that cells maintain fluid balance and protect proteins and lipids from denaturation. The ProP and ProU systems are the main transport systems for compatible solutes. The OsmU system, recently identified as a third osmoprotectant transport system, debilitates excessive growth as well by reducing production of trehalose. We studied a fourth putative osmoprotectant transport system, YehZYXW, with high sequence similarity with the OsmU system. A Salmonella strain lacking YehZ, a predicted substrate-binding protein, did not suffer from hyperosmolarity but rather grew more rapidly than the wild type regardless of glycine betaine, an osmoprotectant, suggesting that the YehZYXW system controls bacterial growth irrespective of transporting glycine betaine. However, the growth advantage of ${\Delta}yehZ$ was not attributable to an increase in OtsBA-mediated trehalose production, which is responsible for the outcompetition of the ${\Delta}osmU$ strain. Overexpressed YehZ in trans was capable of deaccelerating bacterial growth vice versa, supporting a role of YehZ in dampening growth. The expression of yehZ was increased in response to nutrient starvation, acidic pH, and the presence of glycine betaine under hyperosmotic stress. Identifying substrates for YehZ will help decipher the role of the YehZYXW system in regulating bacterial growth in response to environmental cues.

Environmental Stress Strategies for Stimulating Lipid Production from Microalgae for Biodiesel (바이오디젤용 지질 생산을 위한 미세조류 배양에서 환경 스트레스 조건의 활용 전략)

  • Kim, Garam;Mujtaba, Ghulam;Rizwan, Muhammad;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.553-558
    • /
    • 2014
  • Microalgae are a promising alternative feedstock for biodiesel production because their growth rates and oil contents are higher than those of conventional energy crops. Microalgal lipid is mainly triacylglyceride that can be converted to biodiesel as fatty acid methyl esters through trans-esterification. In this paper, the influence of several important lipid inducing factors such as nutrient limitation and changes in salinity and metallic components in microalgae and their potential strategies to be used for biodiesel production are reviewed. Depending upon strains/species that we use, microalgae react to stresses by producing different amount of triacylglyceride and/or by altering their fatty acids composition. Although the most widely applied method is the nitrogen starvation, other potential factors, including nutrient surplus conditions and changes in salinity, pH, temperature and metal concentrations, should be considered to increase biodiesel productivity.