DOI QR코드

DOI QR Code

Flightless-I Controls Fat Storage in Drosophila

  • Park, Jung-Eun (Department of Biomedical Sciences, University of Ulsan College of Medicine) ;
  • Lee, Eun Ji (Department of Biomedical Sciences, University of Ulsan College of Medicine) ;
  • Kim, Jung Kwan (Department of Biological Sciences, Ulsan National Institute of Science and Technology) ;
  • Song, Youngsup (Department of Biomedical Sciences, University of Ulsan College of Medicine) ;
  • Choi, Jang Hyun (Department of Biological Sciences, Ulsan National Institute of Science and Technology) ;
  • Kang, Min-Ji (Department of Biomedical Sciences, University of Ulsan College of Medicine)
  • Received : 2018.03.14
  • Accepted : 2018.05.21
  • Published : 2018.06.30

Abstract

Triglyceride homeostasis is a key process of normal development and is essential for the maintenance of energy metabolism. Dysregulation of this process leads to metabolic disorders such as obesity and hyperlipidemia. Here, we report a novel function of the Drosophila flightless-I (fliI) gene in lipid metabolism. Drosophila fliI mutants were resistant to starvation and showed increased levels of triglycerides in the fat body and intestine, whereas fliI overexpression decreased triglyceride levels. These flies suffered from metabolic stress indicated by increased levels of trehalose in hemolymph and enhanced phosphorylation of eukaryotic initiation factor 2 alpha ($eIF2{\alpha}$). Moreover, upregulation of triglycerides via a knockdown of fliI was reversed by a knockdown of desat1 in the fat body of flies. These results indicate that fliI suppresses the expression of desat1, thereby inhibiting the development of obesity; fliI may, thus, serve as a novel therapeutic target in obesity and metabolic diseases.

Keywords

References

  1. A, I.J., Jeannin, E., Wahli, W., and Desvergne, B. (1997). Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)./retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J. Biol. Chem. 272, 20108-20117. https://doi.org/10.1074/jbc.272.32.20108
  2. Al-Anzi, B., Sapin, V., Waters, C., Zinn, K., Wyman, R.J., and Benzer, S. (2009). Obesity-blocking neurons in Drosophila. Neuron 63, 329-341. https://doi.org/10.1016/j.neuron.2009.07.021
  3. Arrese, E.L., Canavoso, L.E., Jouni, Z.E., Pennington, J.E., Tsuchida, K., and Wells, M.A. (2001). Lipid storage and mobilization in insects: current status and future directions. Insect Biochem. Mol. Biol. 31, 7-17. https://doi.org/10.1016/S0965-1748(00)00102-8
  4. Beller, M., Bulankina, A.V., Hsiao, H.H., Urlaub, H., Jackle, H., and Kuhnlein, R.P. (2010). PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. Cell Metab. 12, 521-532. https://doi.org/10.1016/j.cmet.2010.10.001
  5. Birse, R.T., Choi, J., Reardon, K., Rodriguez, J., Graham, S., Diop, S., Ocorr, K., Bodmer, R., and Oldham, S. (2010). High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab. 12, 533-544. https://doi.org/10.1016/j.cmet.2010.09.014
  6. Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415.
  7. Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., and Hafen, E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213-221. https://doi.org/10.1016/S0960-9822(01)00068-9
  8. Broughton, S.J., Piper, M.D., Ikeya, T., Bass, T.M., Jacobson, J., Driege, Y., Martinez, P., Hafen, E., Withers, D.J., Leevers, S.J., et al. (2005). Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl. Acad. Sci. USA 102, 3105-3110. https://doi.org/10.1073/pnas.0405775102
  9. Campbell, H.D., Schimansky, T., Claudianos, C., Ozsarac, N., Kasprzak, A.B., Cotsell, J.N., Young, I.G., de Couet, H.G., and Miklos, G.L. (1993). The Drosophila melanogaster flightless-I gene involved in gastrulation and muscle degeneration encodes gelsolin-like and leucine-rich repeat domains and is conserved in Caenorhabditis elegans and humans. Proc. Natl. Acad. Sci. USA 90, 11386-11390. https://doi.org/10.1073/pnas.90.23.11386
  10. Canavoso, L.E., Jouni, Z.E., Karnas, K.J., Pennington, J.E., and Wells, M.A. (2001). Fat metabolism in insects. Annu. Rev. Nutr. 21, 23-46. https://doi.org/10.1146/annurev.nutr.21.1.23
  11. Chandra, V., Huang, P., Hamuro, Y., Raghuram, S., Wang, Y., Burris, T.P., and Rastinejad, F. (2008). Structure of the intact PPAR-gamma-RXR-nuclear receptor complex on DNA. Nature 456, 350-356. https://doi.org/10.1038/nature07413
  12. Choi, J.S., Choi, S.S., Kim, E.S., Seo, Y.K., Seo, J.K., Kim, E.K., Suh, P.G., and Choi, J.H. (2015). Flightless-1, a novel transcriptional modulator of PPARgamma through competing with $RXR{\alpha}$. Cell. Signal. 27, 614-620. https://doi.org/10.1016/j.cellsig.2014.11.035
  13. Claudianos, C., and Campbell, H.D. (1995). The novel flightless-I gene brings together two gene families, actin-binding proteins related to gelsolin and leucine-rich-repeat proteins involved in Ras signal transduction. Mol. Biol. Evol. 12, 405-414.
  14. Cohen, P., Miyazaki, M., Socci, N.D., Hagge-Greenberg, A., Liedtke, W., Soukas, A.A., Sharma, R., Hudgins, L.C., Ntambi, J.M., and Friedman, J.M. (2002). Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297, 240-243. https://doi.org/10.1126/science.1071527
  15. Davy, D.A., Ball, E.E., Matthaei, K.I., Campbell, H.D., and Crouch, M.F. (2000). The flightless I protein localizes to actin-based structures during embryonic development. Immunol. Cell Biol. 78, 423-429. https://doi.org/10.1046/j.1440-1711.2000.00926.x
  16. Davy, D.A., Campbell, H.D., Fountain, S., de Jong, D., and Crouch, M.F. (2001). The flightless I protein colocalizes with actin- and microtubule-based structures in motile Swiss 3T3 fibroblasts: evidence for the involvement of PI 3-kinase and Ras-related small GTPases. J. Cell Sci. 114, 549-562.
  17. de Couet, H.G., Fong, K.S., Weeds, A.G., McLaughlin, P.J., and Miklos, G.L. (1995). Molecular and mutational analysis of a gelsolin-family member encoded by the flightless I gene of Drosophila melanogaster. Genetics 141, 1049-1059.
  18. Deak, II, Bellamy, P.R., Bienz, M., Dubuis, Y., Fenner, E., Gollin, M., Rahmi, A., Ramp, T., Reinhardt, C.A., and Cotton, B. (1982). Mutations affecting the indirect flight muscles of Drosophila melanogaster. J. Embryol. Exp. Morphol. 69, 61-81.
  19. Ducharme, N.A., and Bickel, P.E. (2008). Lipid droplets in lipogenesis and lipolysis. Endocrinology 149, 942-949. https://doi.org/10.1210/en.2007-1713
  20. Enoch, H.G., Catala, A., and Strittmatter, P. (1976). Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J. Biol. Chem. 251, 5095-5103.
  21. Goshima, M., Kariya, K., Yamawaki-Kataoka, Y., Okada, T., Shibatohge, M., Shima, F., Fujimoto, E., and Kataoka, T. (1999). Characterization of a novel Ras-binding protein Ce-FLI-1 comprising leucine-rich repeats and gelsolin-like domains. Biochem. Biophy.s Res. Commun. 257, 111-116. https://doi.org/10.1006/bbrc.1999.0420
  22. Gronke, S., Clarke, D.F., Broughton, S., Andrews, T.D., and Partridge, L. (2010). Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet 6, e1000857. https://doi.org/10.1371/journal.pgen.1000857
  23. Gutierrez, E., Wiggins, D., Fielding, B., and Gould, A.P. (2007). Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445, 275-280. https://doi.org/10.1038/nature05382
  24. Hulver, M.W., Berggren, J.R., Carper, M.J., Miyazaki, M., Ntambi, J.M., Hoffman, E.P., Thyfault, J.P., Stevens, R., Dohm, G.L., Houmard, J.A., et al. (2005). Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2, 251-261. https://doi.org/10.1016/j.cmet.2005.09.002
  25. Jiang, G., Li, Z., Liu, F., Ellsworth, K., Dallas-Yang, Q., Wu, M., Ronan, J., Esau, C., Murphy, C., Szalkowski, D., et al. (2005). Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1. J Clin Invest 115, 1030-1038. https://doi.org/10.1172/JCI200523962
  26. Kajava, A.V., Vassart, G., and Wodak, S.J. (1995). Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats. Structure 3, 867-877. https://doi.org/10.1016/S0969-2126(01)00222-2
  27. Kobe, B., and Deisenhofer, J. (1995). A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374, 183-186. https://doi.org/10.1038/374183a0
  28. Kopecki, Z., Arkell, R., Powell, B.C., and Cowin, A.J. (2009). Flightless I regulates hemidesmosome formation and integrin-mediated cellular adhesion and migration during wound repair. J. Invest. Dermatol. 129, 2031-2045. https://doi.org/10.1038/jid.2008.461
  29. Lee, Y.H., and Stallcup, M.R. (2006). Interplay of Fli-I and FLAP1 for regulation of beta-catenin dependent transcription. Nucleic Acids Res. 34, 5052-5059. https://doi.org/10.1093/nar/gkl652
  30. Lee, Y.H., Campbell, H.D., and Stallcup, M.R. (2004). Developmentally essential protein flightless I is a nuclear receptor coactivator with actin binding activity. Mol. Cell. Biol. 24, 2103-2117. https://doi.org/10.1128/MCB.24.5.2103-2117.2004
  31. Miklos, G.L., and De Couet, H.G. (1990). The mutations previously designated as flightless-I3, flightless-O2 and standby are members of the W-2 lethal complementation group at the base of the X-chromosome of Drosophila melanogaster. J. Neurogenetics 6, 133-151. https://doi.org/10.3109/01677069009107106
  32. Miller, C.W., and Ntambi, J.M. (1996). Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc. Natl. Acad. Sci. USA 93, 9443-9448. https://doi.org/10.1073/pnas.93.18.9443
  33. Ntambi, J.M. (1995). The regulation of stearoyl-CoA desaturase (SCD). Prog. Lipid Res. 34, 139-150. https://doi.org/10.1016/0163-7827(94)00010-J
  34. Perrimon, N., Smouse, D., and Miklos, G.L. (1989). Developmental genetics of loci at the base of the X chromosome of Drosophila melanogaster. Genetics 121, 313-331.
  35. Puig, O., Marr, M.T., Ruhf, M.L., and Tjian, R. (2003). Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev. 17, 2006-2020. https://doi.org/10.1101/gad.1098703
  36. Roman, G., Endo, K., Zong, L., and Davis, R.L. (2001). P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98, 12602-12607. https://doi.org/10.1073/pnas.221303998
  37. Ron, D. (2002). Translational control in the endoplasmic reticulum stress response. J. Clin. Invest. 110, 1383-1388. https://doi.org/10.1172/JCI0216784
  38. Ruzehaji, N., Kopecki, Z., Melville, E., Appleby, S.L., Bonder, C.S., Arkell, R.M., Fitridge, R., and Cowin, A.J. (2014). Attenuation of flightless I improves wound healing and enhances angiogenesis in a murine model of type 1 diabetes. Diabetologia 57, 402-412. https://doi.org/10.1007/s00125-013-3107-6
  39. Ryoo, H.D., and Vasudevan, D. (2017). Two distinct nodes of translational inhibition in the integrated stress response. BMB Rep. 50, 539-545. https://doi.org/10.5483/BMBRep.2017.50.11.157
  40. Sampath, H., and Ntambi, J.M. (2011). The role of stearoyl-CoA desaturase in obesity, insulin resistance, and inflammation. Ann. N Y Acad. Sci. 1243, 47-53. https://doi.org/10.1111/j.1749-6632.2011.06303.x
  41. Sampath, H., Miyazaki, M., Dobrzyn, A., and Ntambi, J.M. (2007). Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. J. Biol. Chem. 282, 2483-2493. https://doi.org/10.1074/jbc.M610158200
  42. Singh Ahuja, H., Liu, S., Crombie, D.L., Boehm, M., Leibowitz, M.D., Heyman, R.A., Depre, C., Nagy, L., Tontonoz, P., and Davies, P.J. (2001). Differential effects of rexinoids and thiazolidinediones on metabolic gene expression in diabetic rodents. Mol. Pharmacol. 59, 765-773. https://doi.org/10.1124/mol.59.4.765
  43. Sinha, R.A., Singh, B.K., Zhou, J., Xie, S., Farah, B.L., Lesmana, R., Ohba, K., Tripathi, M., Ghosh, S., Hollenberg, A.N., et al. (2017). Loss of ULK1 increases RPS6KB1-NCOR1 repression of NR1H/LXRmediated Scd1 transcription and augments lipotoxicity in hepatic cells. Autophagy 13, 169-186. https://doi.org/10.1080/15548627.2016.1235123
  44. Straub, K.L., Stella, M.C., and Leptin, M. (1996). The gelsolin-related flightless I protein is required for actin distribution during cellularisation in Drosophila. J. Cell Sci. 109 ( Pt 1), 263-270.
  45. Taniuchi, S., Miyake, M., Tsugawa, K., Oyadomari, M., and Oyadomari, S. (2016). Integrated stress response of vertebrates is regulated by four $eIF2{\alpha}$ kinases. Sci. Rep. 6, 32886. https://doi.org/10.1038/srep32886
  46. Teleman, A.A., Chen, Y.W., and Cohen, S.M. (2005). Drosophila Melted modulates FOXO and TOR activity. Dev. Cell 9, 271-281. https://doi.org/10.1016/j.devcel.2005.07.004
  47. Way, J.M., Harrington, W.W., Brown, K.K., Gottschalk, W.K., Sundseth, S.S., Mansfield, T.A., Ramachandran, R.K., Willson, T.M., and Kliewer, S.A. (2001). Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues. Endocrinology 142, 1269-1277. https://doi.org/10.1210/endo.142.3.8037
  48. Wu, L., Chen, H., Zhu, Y., Meng, J., Li, Y., Li, M., Yang, D., Zhang, P., Feng, M., and Tong, X. (2013). Flightless I homolog negatively regulates ChREBP activity in cancer cells. Int. J. Biochem. Cell Biol. 45, 2688-2697. https://doi.org/10.1016/j.biocel.2013.09.004
  49. Yao, D., Luo, J., He, Q., Shi, H., Li, J., Wang, H., Xu, H., Chen, Z., Yi, Y., and Loor, J.J. (2017). SCD1 Alters Long-Chain Fatty Acid (LCFA). composition and its expression is directly regulated by SREBP-1 and PPARgamma 1 in dairy goat mammary cells. J. Cell Physiol. 232, 635-649. https://doi.org/10.1002/jcp.25469
  50. Yu, Y., Maguire, T.G., and Alwine, J.C. (2014). ChREBP, a glucose-responsive transcriptional factor, enhances glucose metabolism to support biosynthesis in human cytomegalovirus-infected cells. Proc. Natl. Acad. Sci. USA 111, 1951-1956. https://doi.org/10.1073/pnas.1310779111

Cited by

  1. Potential involvement of Drosophila flightless-1 in carbohydrate metabolism vol.51, pp.9, 2018, https://doi.org/10.5483/bmbrep.2018.51.9.153