References
- A, I.J., Jeannin, E., Wahli, W., and Desvergne, B. (1997). Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)./retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J. Biol. Chem. 272, 20108-20117. https://doi.org/10.1074/jbc.272.32.20108
- Al-Anzi, B., Sapin, V., Waters, C., Zinn, K., Wyman, R.J., and Benzer, S. (2009). Obesity-blocking neurons in Drosophila. Neuron 63, 329-341. https://doi.org/10.1016/j.neuron.2009.07.021
- Arrese, E.L., Canavoso, L.E., Jouni, Z.E., Pennington, J.E., Tsuchida, K., and Wells, M.A. (2001). Lipid storage and mobilization in insects: current status and future directions. Insect Biochem. Mol. Biol. 31, 7-17. https://doi.org/10.1016/S0965-1748(00)00102-8
- Beller, M., Bulankina, A.V., Hsiao, H.H., Urlaub, H., Jackle, H., and Kuhnlein, R.P. (2010). PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. Cell Metab. 12, 521-532. https://doi.org/10.1016/j.cmet.2010.10.001
- Birse, R.T., Choi, J., Reardon, K., Rodriguez, J., Graham, S., Diop, S., Ocorr, K., Bodmer, R., and Oldham, S. (2010). High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab. 12, 533-544. https://doi.org/10.1016/j.cmet.2010.09.014
- Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415.
- Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., and Hafen, E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213-221. https://doi.org/10.1016/S0960-9822(01)00068-9
- Broughton, S.J., Piper, M.D., Ikeya, T., Bass, T.M., Jacobson, J., Driege, Y., Martinez, P., Hafen, E., Withers, D.J., Leevers, S.J., et al. (2005). Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl. Acad. Sci. USA 102, 3105-3110. https://doi.org/10.1073/pnas.0405775102
- Campbell, H.D., Schimansky, T., Claudianos, C., Ozsarac, N., Kasprzak, A.B., Cotsell, J.N., Young, I.G., de Couet, H.G., and Miklos, G.L. (1993). The Drosophila melanogaster flightless-I gene involved in gastrulation and muscle degeneration encodes gelsolin-like and leucine-rich repeat domains and is conserved in Caenorhabditis elegans and humans. Proc. Natl. Acad. Sci. USA 90, 11386-11390. https://doi.org/10.1073/pnas.90.23.11386
- Canavoso, L.E., Jouni, Z.E., Karnas, K.J., Pennington, J.E., and Wells, M.A. (2001). Fat metabolism in insects. Annu. Rev. Nutr. 21, 23-46. https://doi.org/10.1146/annurev.nutr.21.1.23
- Chandra, V., Huang, P., Hamuro, Y., Raghuram, S., Wang, Y., Burris, T.P., and Rastinejad, F. (2008). Structure of the intact PPAR-gamma-RXR-nuclear receptor complex on DNA. Nature 456, 350-356. https://doi.org/10.1038/nature07413
-
Choi, J.S., Choi, S.S., Kim, E.S., Seo, Y.K., Seo, J.K., Kim, E.K., Suh, P.G., and Choi, J.H. (2015). Flightless-1, a novel transcriptional modulator of PPARgamma through competing with
$RXR{\alpha}$ . Cell. Signal. 27, 614-620. https://doi.org/10.1016/j.cellsig.2014.11.035 - Claudianos, C., and Campbell, H.D. (1995). The novel flightless-I gene brings together two gene families, actin-binding proteins related to gelsolin and leucine-rich-repeat proteins involved in Ras signal transduction. Mol. Biol. Evol. 12, 405-414.
- Cohen, P., Miyazaki, M., Socci, N.D., Hagge-Greenberg, A., Liedtke, W., Soukas, A.A., Sharma, R., Hudgins, L.C., Ntambi, J.M., and Friedman, J.M. (2002). Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297, 240-243. https://doi.org/10.1126/science.1071527
- Davy, D.A., Ball, E.E., Matthaei, K.I., Campbell, H.D., and Crouch, M.F. (2000). The flightless I protein localizes to actin-based structures during embryonic development. Immunol. Cell Biol. 78, 423-429. https://doi.org/10.1046/j.1440-1711.2000.00926.x
- Davy, D.A., Campbell, H.D., Fountain, S., de Jong, D., and Crouch, M.F. (2001). The flightless I protein colocalizes with actin- and microtubule-based structures in motile Swiss 3T3 fibroblasts: evidence for the involvement of PI 3-kinase and Ras-related small GTPases. J. Cell Sci. 114, 549-562.
- de Couet, H.G., Fong, K.S., Weeds, A.G., McLaughlin, P.J., and Miklos, G.L. (1995). Molecular and mutational analysis of a gelsolin-family member encoded by the flightless I gene of Drosophila melanogaster. Genetics 141, 1049-1059.
- Deak, II, Bellamy, P.R., Bienz, M., Dubuis, Y., Fenner, E., Gollin, M., Rahmi, A., Ramp, T., Reinhardt, C.A., and Cotton, B. (1982). Mutations affecting the indirect flight muscles of Drosophila melanogaster. J. Embryol. Exp. Morphol. 69, 61-81.
- Ducharme, N.A., and Bickel, P.E. (2008). Lipid droplets in lipogenesis and lipolysis. Endocrinology 149, 942-949. https://doi.org/10.1210/en.2007-1713
- Enoch, H.G., Catala, A., and Strittmatter, P. (1976). Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J. Biol. Chem. 251, 5095-5103.
- Goshima, M., Kariya, K., Yamawaki-Kataoka, Y., Okada, T., Shibatohge, M., Shima, F., Fujimoto, E., and Kataoka, T. (1999). Characterization of a novel Ras-binding protein Ce-FLI-1 comprising leucine-rich repeats and gelsolin-like domains. Biochem. Biophy.s Res. Commun. 257, 111-116. https://doi.org/10.1006/bbrc.1999.0420
- Gronke, S., Clarke, D.F., Broughton, S., Andrews, T.D., and Partridge, L. (2010). Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet 6, e1000857. https://doi.org/10.1371/journal.pgen.1000857
- Gutierrez, E., Wiggins, D., Fielding, B., and Gould, A.P. (2007). Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445, 275-280. https://doi.org/10.1038/nature05382
- Hulver, M.W., Berggren, J.R., Carper, M.J., Miyazaki, M., Ntambi, J.M., Hoffman, E.P., Thyfault, J.P., Stevens, R., Dohm, G.L., Houmard, J.A., et al. (2005). Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2, 251-261. https://doi.org/10.1016/j.cmet.2005.09.002
- Jiang, G., Li, Z., Liu, F., Ellsworth, K., Dallas-Yang, Q., Wu, M., Ronan, J., Esau, C., Murphy, C., Szalkowski, D., et al. (2005). Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1. J Clin Invest 115, 1030-1038. https://doi.org/10.1172/JCI200523962
- Kajava, A.V., Vassart, G., and Wodak, S.J. (1995). Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats. Structure 3, 867-877. https://doi.org/10.1016/S0969-2126(01)00222-2
- Kobe, B., and Deisenhofer, J. (1995). A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374, 183-186. https://doi.org/10.1038/374183a0
- Kopecki, Z., Arkell, R., Powell, B.C., and Cowin, A.J. (2009). Flightless I regulates hemidesmosome formation and integrin-mediated cellular adhesion and migration during wound repair. J. Invest. Dermatol. 129, 2031-2045. https://doi.org/10.1038/jid.2008.461
- Lee, Y.H., and Stallcup, M.R. (2006). Interplay of Fli-I and FLAP1 for regulation of beta-catenin dependent transcription. Nucleic Acids Res. 34, 5052-5059. https://doi.org/10.1093/nar/gkl652
- Lee, Y.H., Campbell, H.D., and Stallcup, M.R. (2004). Developmentally essential protein flightless I is a nuclear receptor coactivator with actin binding activity. Mol. Cell. Biol. 24, 2103-2117. https://doi.org/10.1128/MCB.24.5.2103-2117.2004
- Miklos, G.L., and De Couet, H.G. (1990). The mutations previously designated as flightless-I3, flightless-O2 and standby are members of the W-2 lethal complementation group at the base of the X-chromosome of Drosophila melanogaster. J. Neurogenetics 6, 133-151. https://doi.org/10.3109/01677069009107106
- Miller, C.W., and Ntambi, J.M. (1996). Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc. Natl. Acad. Sci. USA 93, 9443-9448. https://doi.org/10.1073/pnas.93.18.9443
- Ntambi, J.M. (1995). The regulation of stearoyl-CoA desaturase (SCD). Prog. Lipid Res. 34, 139-150. https://doi.org/10.1016/0163-7827(94)00010-J
- Perrimon, N., Smouse, D., and Miklos, G.L. (1989). Developmental genetics of loci at the base of the X chromosome of Drosophila melanogaster. Genetics 121, 313-331.
- Puig, O., Marr, M.T., Ruhf, M.L., and Tjian, R. (2003). Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev. 17, 2006-2020. https://doi.org/10.1101/gad.1098703
- Roman, G., Endo, K., Zong, L., and Davis, R.L. (2001). P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98, 12602-12607. https://doi.org/10.1073/pnas.221303998
- Ron, D. (2002). Translational control in the endoplasmic reticulum stress response. J. Clin. Invest. 110, 1383-1388. https://doi.org/10.1172/JCI0216784
- Ruzehaji, N., Kopecki, Z., Melville, E., Appleby, S.L., Bonder, C.S., Arkell, R.M., Fitridge, R., and Cowin, A.J. (2014). Attenuation of flightless I improves wound healing and enhances angiogenesis in a murine model of type 1 diabetes. Diabetologia 57, 402-412. https://doi.org/10.1007/s00125-013-3107-6
- Ryoo, H.D., and Vasudevan, D. (2017). Two distinct nodes of translational inhibition in the integrated stress response. BMB Rep. 50, 539-545. https://doi.org/10.5483/BMBRep.2017.50.11.157
- Sampath, H., and Ntambi, J.M. (2011). The role of stearoyl-CoA desaturase in obesity, insulin resistance, and inflammation. Ann. N Y Acad. Sci. 1243, 47-53. https://doi.org/10.1111/j.1749-6632.2011.06303.x
- Sampath, H., Miyazaki, M., Dobrzyn, A., and Ntambi, J.M. (2007). Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. J. Biol. Chem. 282, 2483-2493. https://doi.org/10.1074/jbc.M610158200
- Singh Ahuja, H., Liu, S., Crombie, D.L., Boehm, M., Leibowitz, M.D., Heyman, R.A., Depre, C., Nagy, L., Tontonoz, P., and Davies, P.J. (2001). Differential effects of rexinoids and thiazolidinediones on metabolic gene expression in diabetic rodents. Mol. Pharmacol. 59, 765-773. https://doi.org/10.1124/mol.59.4.765
- Sinha, R.A., Singh, B.K., Zhou, J., Xie, S., Farah, B.L., Lesmana, R., Ohba, K., Tripathi, M., Ghosh, S., Hollenberg, A.N., et al. (2017). Loss of ULK1 increases RPS6KB1-NCOR1 repression of NR1H/LXRmediated Scd1 transcription and augments lipotoxicity in hepatic cells. Autophagy 13, 169-186. https://doi.org/10.1080/15548627.2016.1235123
- Straub, K.L., Stella, M.C., and Leptin, M. (1996). The gelsolin-related flightless I protein is required for actin distribution during cellularisation in Drosophila. J. Cell Sci. 109 ( Pt 1), 263-270.
-
Taniuchi, S., Miyake, M., Tsugawa, K., Oyadomari, M., and Oyadomari, S. (2016). Integrated stress response of vertebrates is regulated by four
$eIF2{\alpha}$ kinases. Sci. Rep. 6, 32886. https://doi.org/10.1038/srep32886 - Teleman, A.A., Chen, Y.W., and Cohen, S.M. (2005). Drosophila Melted modulates FOXO and TOR activity. Dev. Cell 9, 271-281. https://doi.org/10.1016/j.devcel.2005.07.004
- Way, J.M., Harrington, W.W., Brown, K.K., Gottschalk, W.K., Sundseth, S.S., Mansfield, T.A., Ramachandran, R.K., Willson, T.M., and Kliewer, S.A. (2001). Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues. Endocrinology 142, 1269-1277. https://doi.org/10.1210/endo.142.3.8037
- Wu, L., Chen, H., Zhu, Y., Meng, J., Li, Y., Li, M., Yang, D., Zhang, P., Feng, M., and Tong, X. (2013). Flightless I homolog negatively regulates ChREBP activity in cancer cells. Int. J. Biochem. Cell Biol. 45, 2688-2697. https://doi.org/10.1016/j.biocel.2013.09.004
- Yao, D., Luo, J., He, Q., Shi, H., Li, J., Wang, H., Xu, H., Chen, Z., Yi, Y., and Loor, J.J. (2017). SCD1 Alters Long-Chain Fatty Acid (LCFA). composition and its expression is directly regulated by SREBP-1 and PPARgamma 1 in dairy goat mammary cells. J. Cell Physiol. 232, 635-649. https://doi.org/10.1002/jcp.25469
- Yu, Y., Maguire, T.G., and Alwine, J.C. (2014). ChREBP, a glucose-responsive transcriptional factor, enhances glucose metabolism to support biosynthesis in human cytomegalovirus-infected cells. Proc. Natl. Acad. Sci. USA 111, 1951-1956. https://doi.org/10.1073/pnas.1310779111
Cited by
- Potential involvement of Drosophila flightless-1 in carbohydrate metabolism vol.51, pp.9, 2018, https://doi.org/10.5483/bmbrep.2018.51.9.153