DOI QR코드

DOI QR Code

Stem Cell Properties of Gastric Cancer Stem-Like Cells under Stress Conditions Are Regulated via the c-Fos/UCH-L3/β-Catenin Axis

  • Jae Hyeong Lee (Department of Molecular Bioscience, Kangwon National University) ;
  • Sang-Ah Park (Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology) ;
  • Il-Geun Park (Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology) ;
  • Bo Kyung Yoon (Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine) ;
  • Jung-Shin Lee (Department of Molecular Bioscience, Kangwon National University) ;
  • Ji Min Lee (Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2023.01.12
  • Accepted : 2023.05.24
  • Published : 2023.08.31

Abstract

Gastric cancer stem-like cells (GCSCs) possess stem cell properties, such as self-renewal and tumorigenicity, which are known to induce high chemoresistance and metastasis. These characteristics of GCSCs are further enhanced by autophagy, worsening the prognosis of patients. Currently, the mechanisms involved in the induction of stemness in GCSCs during autophagy remain unclear. In this study, we compared the cellular responses of GCSCs with those of gastric cancer intestinal cells (GCICs) whose stemness is not induced by autophagy. In response to glucose starvation, the levels of β-catenin and stemness-related genes were upregulated in GCSCs, while the levels of β-catenin declined in GCICs. The pattern of deubiquitinase ubiquitin C-terminal hydrolase-L3 (UCH-L3) expression in GCSCs and GCICs was similar to that of β-catenin expression depending on glucose deprivation. We also observed that inhibition of UCH-L3 activity reduced β-catenin protein levels. The interaction between UCH-L3 and β-catenin proteins was confirmed, and it reduced the ubiquitination of β-catenin. Our results suggest that UCH-L3 induces the stabilization of β-catenin, which is required to promote stemness during autophagy activation. Also, UCH-L3 expression was regulated by c-Fos, and the levels of c-Fos increased in response to autophagy activation. In summary, our findings suggest that the inhibition of UCH-L3 during nutrient deprivation could suppress stress resistance of GCSCs and increase the survival rates of gastric cancer patients.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program NRF-2021R1C1C1008780 to J.M.L. from the National Research Foundation (NRF) grant funded by the Korean government.

References

  1. Camuzard, O., Santucci-Darmanin, S., Carle, G.F., and Pierrefite-Carle, V. (2020). Autophagy in the crosstalk between tumor and microenvironment. Cancer Lett. 490, 143-153. https://doi.org/10.1016/j.canlet.2020.06.015
  2. Chen, Y., Zhao, H., Liang, W., Jiang, E., Zhou, X., Shao, Z., Liu, K., and Shang, Z. (2022). Autophagy regulates the cancer stem cell phenotype of head and neck squamous cell carcinoma through the noncanonical FOXO3/SOX2 axis. Oncogene 41, 634-646. https://doi.org/10.1038/s41388-021-02115-7
  3. Cheong, J.H.', Yang, H.K., Kim, H., Kim, W.H., Kim, Y.W., Kook, M.C., Park, Y.K., Kim, H.H., Lee, H.S., Lee, K.H., et al. (2018). Predictive test for chemotherapy response in resectable gastric cancer: a multi-cohort, retrospective analysis. Lancet Oncol. 19, 629-638. https://doi.org/10.1016/S1470-2045(18)30108-6
  4. Cole, M.F., Johnstone, S.E., Newman, J.J., Kagey, M.H., and Young, R.A. (2008). Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 22, 746-755. https://doi.org/10.1101/gad.1642408
  5. Dai, X.M., Zhang, Y.H., Lin, X.H., Huang, X.X., Zhang, Y., Xue, C.R., Chen, W.N., Ye, J.X., Lin, X.J., and Lin, X. (2021). SIK2 represses AKT/GSK3beta/beta-catenin signaling and suppresses gastric cancer by inhibiting autophagic degradation of protein phosphatases. Mol. Oncol. 15, 228-245. https://doi.org/10.1002/1878-0261.12838
  6. Fan, D., Ren, B., Yang, X., Liu, J., and Zhang, Z. (2016). Upregulation of miR501-5p activates the wnt/beta-catenin signaling pathway and enhances stem cell-like phenotype in gastric cancer. J. Exp. Clin. Cancer Res. 35, 177.
  7. Fu, Y., Du, P., Zhao, J., Hu, C., Qin, Y., and Huang, G. (2018). Gastric cancer stem cells: mechanisms and therapeutic approaches. Yonsei Med. J. 59, 1150-1158. https://doi.org/10.3349/ymj.2018.59.10.1150
  8. Fujita, T. (2009). Gastric cancer. Lancet 374, 1593-1594; author reply 1594-1595. https://doi.org/10.1016/S0140-6736(09)61946-2
  9. Gu, Y.Y., Yang, M., Zhao, M., Luo, Q., Yang, L., Peng, H., Wang, J., Huang, S.K., Zheng, Z.X., Yuan, X.H., et al. (2015). The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biol. 36, 8379-8387. https://doi.org/10.1007/s13277-015-3566-0
  10. Joshi, S.S. and Badgwell, B.D. (2021). Current treatment and recent progress in gastric cancer. CA Cancer J. Clin. 71, 264-279. https://doi.org/10.3322/caac.21657
  11. Kang, W., Tong, J.H., Chan, A.W., Lee, T.L., Lung, R.W., Leung, P.P., So, K.K., Wu, K., Fan, D., Yu, J., et al. (2011). Yes-associated protein 1 exhibits oncogenic property in gastric cancer and its nuclear accumulation associates with poor prognosis. Clin. Cancer Res. 17, 2130-2139. https://doi.org/10.1158/1078-0432.CCR-10-2467
  12. Lee, J.E., Lim, Y.H., and Kim, J.H. (2021). UCH-L1 and UCH-L3 regulate the cancer stem cell-like properties through PI3 K/Akt signaling pathway in prostate cancer cells. Anim. Cells Syst. (Seoul) 25, 312-322. https://doi.org/10.1080/19768354.2021.1987320
  13. Lepourcelet, M., Chen, Y.N., France, D.S., Wang, H., Crews, P., Petersen, F., Bruseo, C., Wood, A.W., and Shivdasani, R.A. (2004). Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5, 91-102.
  14. Li, M., Zhang, B., Zhang, Z., Liu, X., Qi, X., Zhao, J., Jiang, Y., Zhai, H., Ji, Y., and Luo, D. (2014). Stem cell-like circulating tumor cells indicate poor prognosis in gastric cancer. Biomed Res. Int. 2014, 981261.
  15. Lin, X., Xiao, Z., Chen, T., Liang, S.H., and Guo, H. (2020). Glucose metabolism on tumor plasticity, diagnosis, and treatment. Front. Oncol. 10, 317.
  16. Lu, G., Li, J., Ding, L., Wang, C., Tang, L., Liu, X., Xu, J., Zhou, Q., Sun, J., Wang, W., et al. (2021). The deubiquitinating enzyme UCHL1 induces resistance to doxorubicin in HER2+ breast cancer by promoting free fatty acid synthesis. Front. Oncol. 11, 629640.
  17. Muhammad, N., Bhattacharya, S., Steele, R., Phillips, N., and Ray, R.B. (2017). Involvement of c-Fos in the promotion of cancer stem-like cell properties in head and neck squamous cell carcinoma. Clin. Cancer Res. 23, 3120-3128. https://doi.org/10.1158/1078-0432.CCR-16-2811
  18. Nazio, F., Bordi, M., Cianfanelli, V., Locatelli, F., and Cecconi, F. (2019). Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ. 26, 690-702. https://doi.org/10.1038/s41418-019-0292-y
  19. Nusse, R. and Clevers, H. (2017). Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985-999. https://doi.org/10.1016/j.cell.2017.05.016
  20. Ouyang, L., Yan, B., Liu, Y., Mao, C., Wang, M., Liu, N., Wang, Z., Liu, S., Shi, Y., Chen, L., et al. (2020). The deubiquitylase UCHL3 maintains cancer stem-like properties by stabilizing the aryl hydrocarbon receptor. Signal Transduct. Target. Ther. 5, 78.
  21. Rawla, P. and Barsouk, A. (2019). Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz. Gastroenterol. 14, 26-38. https://doi.org/10.5114/pg.2018.80001
  22. Shao, Y., Ren, W., Dai, H., Yang, F., Li, X., Zhang, S., Liu, J., Yao, X., Zhao, Q., Sun, X., et al. (2023). SKP2 contributes to AKT activation by ubiquitination degradation of PHLPP1, impedes autophagy, and facilitates the survival of thyroid carcinoma. Mol. Cells 46, 360-373. https://doi.org/10.14348/molcells.2022.2242
  23. Shi, J., Liu, Y., Xu, X., Zhang, W., Yu, T., Jia, J., and Liu, C. (2015). Deubiquitinase USP47/UBP64E regulates beta-catenin ubiquitination and degradation and plays a positive role in Wnt signaling. Mol. Cell. Biol. 35, 3301-3311. https://doi.org/10.1128/MCB.00373-15
  24. Singh, S.S., Vats, S., Chia, A.Y., Tan, T.Z., Deng, S., Ong, M.S., Arfuso, F., Yap, C.T., Goh, B.C., Sethi, G., et al. (2018). Dual role of autophagy in hallmarks of cancer. Oncogene 37, 1142-1158. https://doi.org/10.1038/s41388-017-0046-6
  25. Takebe, N., Harris, P.J., Warren, R.Q., and Ivy, S.P. (2011). Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol. 8, 97-106. https://doi.org/10.1038/nrclinonc.2010.196
  26. Tanabe, S., Aoyagi, K., Yokozaki, H., and Sasaki, H. (2016). Regulation of CTNNB1 signaling in gastric cancer and stem cells. World J. Gastrointest. Oncol. 8, 592-598. https://doi.org/10.4251/wjgo.v8.i8.592
  27. Togano, S., Yashiro, M., Masuda, G., Sugimoto, A., Miki, Y., Yamamoto, Y., Sera, T., Kushiyama, S., Nishimura, S., Kuroda, K., et al. (2021). Gastric cancer stem cells survive in stress environments via their autophagy system. Sci. Rep. 11, 20664.
  28. Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A. (2015). Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87-108. https://doi.org/10.3322/caac.21262
  29. Velazquez, F.N., Caputto, B.L., and Boussin, F.D. (2015). c-Fos importance for brain development. Aging (Albany N.Y.) 7, 1028-1029. https://doi.org/10.18632/aging.100862
  30. Wang, H., Duan, X.L., Qi, X.L., Meng, L., Xu, Y.S., Wu, T., and Dai, P.G. (2017). Concurrent hypermethylation of SFRP2 and DKK2 activates the Wnt/beta-catenin pathway and is associated with poor prognosis in patients with gastric cancer. Mol. Cells 40, 45-53. https://doi.org/10.14348/molcells.2017.2245
  31. Xu, J.L., Yuan, L., Tang, Y.C., Xu, Z.Y., Xu, H.D., Cheng, X.D., and Qin, J.J. (2020). The role of autophagy in gastric cancer chemoresistance: friend or foe? Front. Cell Dev. Biol. 8, 621428.
  32. Yang, F., Xu, J., Li, H., Tan, M., Xiong, X., and Sun, Y. (2019). FBXW2 suppresses migration and invasion of lung cancer cells via promoting beta-catenin ubiquitylation and degradation. Nat. Commun. 10, 1382.
  33. Yang, H., Zhang, C., Fang, S., Ou, R., Li, W., and Xu, Y. (2015). UCH-LI acts as a novel prognostic biomarker in gastric cardiac adenocarcinoma. Int. J. Clin. Exp. Pathol. 8, 13957-13967.
  34. Yu, Z., Pestell, T.G., Lisanti, M.P., and Pestell, R.G. (2012). Cancer stem cells. Int. J. Biochem. Cell Biol. 44, 2144-2151. https://doi.org/10.1016/j.biocel.2012.08.022
  35. Zhang, L., Guo, X., Zhang, D., Fan, Y., Qin, L., Dong, S., and Zhang, L. (2017). Upregulated miR-132 in Lgr5(+) gastric cancer stem cell-like cells contributes to cisplatin-resistance via SIRT1/CREB/ABCG2 signaling pathway. Mol. Carcinog. 56, 2022-2034. https://doi.org/10.1002/mc.22656
  36. Zhang, Y. and Wang, X. (2020). Targeting the Wnt/beta-catenin signaling pathway in cancer. J. Hematol. Oncol. 13, 165.
  37. Zhu, Y., Huang, S., Chen, S., Chen, J., Wang, Z., Wang, Y., and Zheng, H. (2021). SOX2 promotes chemoresistance, cancer stem cells properties, and epithelial-mesenchymal transition by beta-catenin and Beclin1/autophagy signaling in colorectal cancer. Cell Death Dis. 12, 449.