• 제목/요약/키워드: Standard Dynamics Model

검색결과 184건 처리시간 0.026초

Comparison of a Microbiological Model Simulation with Microcosm Data

  • Lee, Jae-Young;Tett, Paul;Jones, Ken
    • Journal of the korean society of oceanography
    • /
    • 제39권4호
    • /
    • pp.222-233
    • /
    • 2004
  • Using nitrogen as the limiting nutrient, the default version of a microplankton-detritus model linked chlorophyll concentration to the autotroph nitrogen. However, phosphorus dynamics were added to simulate the results of a microcosm experiment. Using standard parameter values with a single value of microheterotroph fraction in the microplankton taken from the observed range, the best simulation successfully captured the main features of the time-courses of chlorophyll and particulate organic carbon, nitrogen and phosphorus, with root-mean-square error equivalent to 29% of particulate concentration. A standard version of microbiological model assumes complete internal cycling of nutrient elements; adding a term for ammonium and phosphate excretion by microheterotrophs did not significantly improve predictions. Relaxing the requirement for constant microheterotroph fraction resulted in an autotroph-heterotroph model AH, with dynamics resembling those of a Lotka-Volterra predator-prey system. AH fitted the microcosm data worse than did MP, justifying the suppression of Lotka-Volterra dynamics in MP. The paper concludes with a discussion of possible reasons for the success of the simple bulk dynamics of MP in simulating microplankton behaviour.

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

철도시스템 전산유체해석 표준 프레임웍을 이용한 KTX 차량 주변 압력장에 대한 수치해석 (A Numerical Analysis on the Pressure Field Around KTX Train Using the Standard Framework of CFD Analysis for Railway System)

  • 남성원;차창환;권혁빈
    • 한국철도학회논문집
    • /
    • 제9권5호
    • /
    • pp.511-516
    • /
    • 2006
  • A standard framework of CFD(Computational Fluid dynamics) analysis for railway system has been developed to evaluate the overall aerodynamic performance of railway system and has been adopted to numerical simulation of the pressure field around KTX train. The framework is composed of standard aerodynamic model and standard aerodynamic performance to customize the general CFD solution process reflecting the characteristics of railway system such as various operation mode and performance factors. The results show that the standard framework of CFD analysis for railway system can provide objectivity and consistency to the CFD analysis for railway system and the pressure field around KTX train has been successively solved.

A 3D CFD analysis of flow past a hipped roof with comparison to industrial building standards

  • Khalil, Khalid;Khan, Huzafa;Chahar, Divyansh;Townsend, Jamie F.;Rana, Zeeshan A.
    • Wind and Structures
    • /
    • 제34권6호
    • /
    • pp.483-497
    • /
    • 2022
  • Three-dimensional (3D) computational fluid dynamics (CFD) analysis of flow around a hipped-roof building representative of UK inland conditions are conducted. Unsteady simulations are performed using three variations of the k-ϵ RANS turbulence model namely, the Standard, Realizable, and RNG models, and their predictive capability is measured against current European building standards. External pressure coefficients and wind loading are found through the BS 6399-2:1997 standard (obsolete) and the current European standards (BS EN 1991-1-4:2005 and A1:20101). The current European standard provides a more conservative wind loading estimate compared to its predecessor and the k-ϵ RNG model falls within 15% of the value predicted by the current standard. Surface shear stream-traces and Q-criterion were used to analyze the flow physics for each model. The RNG model predicts immediate flow separation leading to the creation of vortical structures on the hipped-roof along with a larger separation region. It is observed that the Realizable model predicts the side vortex to be a result of both the horseshoe vortex and the flow deflected off it. These model-specific aerodynamic features present the most disparity between building standards at leeward roof locations. Finally, pedestrian comfort and safety criteria are studied where the k-ϵ Standard model predicts the most ideal pedestrian conditions and the Realizable model yields the most conservative levels.

시스템다이내믹스를 활용한 인력 수급 계획 모형설계 (Demand Plan of Manpower Model Design Using System Dynamics)

  • 정재림;전소연;곽미애;연승준
    • 한국시스템다이내믹스연구
    • /
    • 제8권1호
    • /
    • pp.49-66
    • /
    • 2007
  • Due to criminal aspects spreading nation wide, their intelligence level increasing and becoming digitalized, the citizens' interest in and desire for crime security have increased. Until now, the preceding researches have been focused on finding the specific variables that have direct effects on the demand for police manpower through regression analysis and attempted to predict number of needs. However, there have never been any researches producing the accurate number of demands for crimes and human resources needed for each work load. Therefore, this research have analyzed each police station functions by interviewing the persons in charge and selected the main duty for each functions. From this, by using the method of system dynamics, this research was able to predict the standard number of manpower needed for each police station functions. Also, by making a model for each 235 police stations, the best efficient employment plan for police stations and district agencies have been further discussed based on the computer simulation results.

  • PDF

강제진동기법을 이용한 표준동역학 모델의 피치 동안정미계수측정 (Measurements of the Pitch Dynamic Stability Derivatives of a Standard Dynamics Model Using a Forced Vibration Technique)

  • 조환기;김승필;백승욱;장조원
    • 한국항공우주학회지
    • /
    • 제35권6호
    • /
    • pp.489-495
    • /
    • 2007
  • 표준 동역학 모델의 피치 동안정미계수를 측정하기 위한 실험적 연구가 아음속 풍동에서 수행되었다. 모델은 트리거 신호가 주어지면 직류형 서보모터에 의하여 일정한 진폭과 주파수로 상, 하 피치운동을 시작하며, 동시에 25 사이클 동안의 데이터가 자료획득시스템에 저장된다. 동안정미계수 계산에 필요한 위상차는 기준입력 신호와 모델의 무게중심에 장착된 밸런스로부터 나오는 출력신호의 최대 정점과의 위상변화로부터 얻어졌다. 또한 Stabilator의 동안정미계수에 대한 영향은 조종면을 변위시키면서 측정하였다. 본 실험을 위해 독창적으로 제작된 모델의 구동장치 및 실험장치가 다른 연구와 다른데도 불구하고 실험결과는 받음각 변화에 따른 동안정미계수의 변화 경향성이 TPI, NAE, 그리고 FFA의 연구결과와 비교적 잘 일치함을 확인하였다.

Bayesian Estimation of State-Space Model Using the Hybrid Monte Carlo within Gibbs Sampler

  • Park, Ilsu
    • Communications for Statistical Applications and Methods
    • /
    • 제10권1호
    • /
    • pp.203-210
    • /
    • 2003
  • In a standard Metropolis-type Monte Carlo simulation, the proposal distribution cannot be easily adapted to "local dynamics" of the target distribution. To overcome some of these difficulties, Duane et al. (1987) introduced the method of hybrid Monte Carlo(HMC) which combines the basic idea of molecular dynamics and the Metropolis acceptance-rejection rule to produce Monte Carlo samples from a given target distribution. In this paper, using the HMC within Gibbs sampler, an asymptotical estimate of the smoothing mean and a general solution to state space modeling in Bayesian framework is obtaineds obtained.

수치풍동 기법을 이용한 정사각형 건물 주위의 풍압계수에 관한 연구 (A NUMERICAL SIMULATION OF THE PRESSURE COEFFICIENT AROUND A CUBIC BUILDING MODEL)

  • 여재현;허남건;원찬식;김사량;최창근
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.162-166
    • /
    • 2007
  • In the present study, the pressure coefficient of a cubic building model is numerically simulated. Three turbulence models of standard ${\kappa}-{\varepsilon}$, RNG ${\kappa}-{\varepsilon}$ and LES are adopted and the results are compared with the available experimental data. From the results, it has been found that RNG ${\kappa}-{\varepsilon}$ turbulence model and LES turbulence model were shown to predict fairly well the experimental pressure coefficient. In contrast, the results of the standard ${\kappa}-{\varepsilon}$ turbulence model showed large discrepancies in pressure coefficient on the side and top surfaces of the cubic building, which limits the applicability of the standard ${\kappa}-{\varepsilon}$ turbulence model on wind engineering.

  • PDF

CFD evaluation of a suitable site for a wind turbine on a trapezoid shaped hill

  • Unchai, Thitipong;Janyalertadun, Adun
    • Wind and Structures
    • /
    • 제19권1호
    • /
    • pp.75-88
    • /
    • 2014
  • The computational fluid dynamic is used to explore new aspects of the hill flow. This analysis focuses on flow dependency and the comparison of results from measurements and simulations to show an optimization turbulent model and the possibility of replacing measurements with simulations. The first half of the paper investigates a suitable turbulence model for determining a suitable site for a wind turbine. Results of the standard k-${\varepsilon}$ model are compared precisely with the measurements taken in front of the hilltop, The Reynolds Stress Model showed exact results after 1.0 times of hill steepness but the standard k-${\varepsilon}$ model and standard k-${\omega}$ model showed greater underestimation. In addition, velocity flow over Pha Taem hill topography and the reference geometry shape were compared to find a suitable site for a turbine in case the actual hill structure was associated with the trapezoid geometric shape. Further study of geometry shaped hills and suitable sites for wind turbines will be reported elsewhere.

3D/1D 하이브리드 유한요소 모델을 이용한 동력 분산형 차세대 고속열차 전체차량의 충돌 해석 (Collision Analysis of the Next Generation High-speed EMU Using 3D/1D Hybrid FE Model)

  • 김거영;구정서
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.67-76
    • /
    • 2012
  • In this paper, collision analysis of the full rake for the Next Generation High-speed EMU is conducted using a 3D/1D hybrid model, which combines 3-dimensional (3D) front-end structure of finite element model and 1-dimensional (1D) multi-body dynamics model in order to analyze train collision with a standard 3D deformable obstacle. The crush forces, passengers' accelerations and energy absorptions of a full rake train can be easily obtained through a simulation of a 1D dynamics model composed of nonlinear springs, dampers and masses. Also the obtained simulation results are very similar to those of a 3D model if an overriding behavior does not occur during collision. The standard obstacle in TSI regulation has been changed from a rigid body to a deformable body, and therefore 3D collision simulations should be conducted because their simulation results depends on the front-end structure of a train. According to the obstacle collision analysis of this study, the obstacle collides with the driver's upper structure after overriding over the front-end module. The 3D/1D hybrid model is effective to evaluate a main energy-absorbing module that is frequently changed during design process and reduce the need time of the modeling and analysis when compared to a 3D full car body.