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Bayesian Estimation of State-Space Model Using the Hybrid
Monte Carlo within Gibbs Sampler

Ilsu Choil)

Abstract

In a standard Metropolis-type Monte Carlo simulation, the proposal distribution
cannot be easily adapted to "local dynamics” of the target distribution. To overcome
some of these difficulties, Duane et al. (1987) introduced the method of hybrid Monte
Carlo(HMC) which combines the basic idea of molecular dynamics and the Metropolis
acceptance-rejection rule to produce Monte Carlo samples from a given target
distribution. In this paper, using the HMC within Gibbs sampler, an asymptotical
estimate of the smoothing mean and a general solution to state space modeling in
Bayesian framework is obtained.
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1. Introduction

For the last decade, various simulation-based nonlinear and non-Gaussian filters and
smoothers have been proposed, in order to improve precision of the state estimates and reduce
a computational burden. Recently, filters and smoothers have been developed by applying
various sampling techniques such as Gibbs sampling, rejection sampling, and
Metropolis-Hastings Algorithm within Gibbs sampling.

Carlin et al. (1992) and Carter and Kohn (1994, 1996) applied the Gibbs sampler to evaluate
the smoother and the smoothing means in a Bayesian framework. Random draws of the state
variables for all time periods are jointly generated, which implies that the smoothing procedure
is formulated. They choose the prior densities such that random draws are easily generated.
They utilize rejection sampling as well as Gibbs sampling in the case of the nonlinear system.
It is known that rejection sampling is sometimes computationally inefficient. We sometimes
have the case where rejection sampling does not work well, depending on the underlying
assumptions on the functional form or the error terms.

Tanizaki (1996, 1999) and Tanizaki and Mariano (1998) proposed nonlinear filter and
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smoother utilizing rejection sampling. When the acceptance probability is close to zero,
rejection sampling takes a long time computationally. In order to avoid these computational
disadvantages of the existing procedures, Geweke and Tanizaki (1999) suggested the nonlinear
and non-Gaussian smoother using the Metropolis—Hastings Algorithm within Gibbs sampling,
where the measurement and transition equations are specified in any general formulation and
the error terms in the state-space model are not necessarily normal. They also focus on
smoothing in a non-Bayesian framework. However, although this procedure might be
applicable, the random walk nature of the algorithm makes it very inefficient to explore the
posterior distribution.

Duane et al. (1987) introduced Hybrid Monte Carlo (HMC) which can be very effective
means for exploring complex posterior distribution. Hybrid Monte Carlo(HMC) as a Markov
chain Monte Carlo(MCMC) technique built upon the basic principle of Hamiltonian mechanics.
Its applications in molecular simulation have attracted much interest from researchers.

Thus we are to propose that the Hybrid Monte Carlo within Gibbs sampler, dealing with
any nonlinear and non-Gaussian state-space model in a Bayesian framework. We apply
Gaussian state-space model in Shephard and Pitt(1997) as daily exchange rates of won/dollar.

2. Hybrid Monte Carlo

Hybrid Monte Carlo(HMC) as first introduced by Duane et al.(1987) is a Markov chain
Monte CarloMCMC) technique built upon the basic principle of Hamiltonian mechanics. The
method is designed to promote rapid mixing of the Markov chain, and is especially suited to
problems involving complex densities where exploration by a random walk may be too slow.
In its simplest and original form, HMC introduces a set of auxiliary momenta variables

p=1{(p,,-, p7) and the related Hamiltonian function H(x, p):

Hx, )= Ulny, 2+ & Bpb= U+ /2
From the Gibbs factor:

P(x, p)<expl — H(x, p)l=expl — U(x)]expl — p*/2]

The method deduce that, from the statistical point of view, the momenta p are nothing but
a set of independent, Gaussian distributed, random variables of zero mean and variance equal

to the system. There is no simple closed form for the proposal probability g(x’|x), and the
proposal change x —x’ is done in the following way: first, a set of initial values for the
momenta p are generated by using the Gaussian distribution exp[— p?/2] as suggested by
the above equation; next, Hamilton’s equation of motion, x',~== bi, 17',~= F;, where

F{x)=—0U(x)/dx;is the force acting on the variable x;, are integrated numerically using



Bayesian Estimation of State-Space Model Using 205
the Hybrid Monte Carlo within Gibbs sampler

the leap-flog algorithm with a time step &¢:
x; = x4+ 8tp,+*%t—2—F,(x)
Py = pt'*"%t[Ft(x)‘l‘Ft(xl)], t=1,-,T

The proposal x° is obtained after # iterations of the previous basic integration step. In

other words: by numerical integration of Hamilton’s equations during a time #ndf. The value

x" must now be accepted with a probability given by:
h(x'|x) =min{1,exp[ - (H(x", ') —H(x, p)1}

Summing up, the HMC proceeds by generating representative configurations by using a
proposal obtained by some of the mappings given above. This proposal must now be accepted
with a probability given by (). In the special case where only one deterministic step used, it
is called the Langevin algorithm, which is a discrete time approximation to the Langevin
diffusion process.

3. Bayesian formula in State-Space Model

We consider a nonlinear and nonnormal state-space model in the following general form:

(Measurement Equation) vi=h{x:, €, 7
(Transition Equation) 2= f(x1, 71, 6)
for t=1,2,---, T, where T denotes the sample size. Suppose we observe only y; and the

functional forms of both #( ) and A +) are known, whereas x; is not directly observed.
Since the analytical computation of the likelihood function of y is generally infeasible, the
standard maximum likelihood estimation method cannot be applied. We overcome this difficulty
by contaminated error &,.
Treating the problem as a missing data problem, we write the pseudo posterior

distribution of @ and 7 as follows:

Plxr, 7|Y1) o< P(Yrlxr, 7 )P(xd7)P(7)

It can be shown that under mild conditions, the pseudo posterior of 7 converges to its true

posterior almost surely as 0.
Under the setup, the density of xr and Yr given 7 and & is written as!

Plxr, Yrly, =P xdAd)P(Ydx,7)

where the two densities in the right hand side are represented by:
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P(xl6) ﬁlP(xe,_l, 9, if x, is stochastic,

P(x49) ={
ﬁlp(xez—l, ) otherwise

P(Ydxr, V)= L—IIP(y,lx:, 7)
where P(x(|0) denotes the initial density of x; when x;is assumed to be a random

variable. From the Bayes theorem, the conditional distribution of xr given Yr, v and & is

obtained as follows:

PlxAd Y7, &)= P(xr, Y47, 0)

fP(xT, Yoy, Odxr

4. HMC within Gibbs sampler

Carter and Kohn(1996) applied the Gibbs sampler to evaluate the smoothing means in a
Bayesian framework. Generally, the smoothing random draws are generated as follows:
(STEP 1) '
1) Take appropriate values for ¥, & and x,, (=1,2,--,T.

2) Generate a random draw of x, from Px]-) for t=1,2,-, T.

3) Generate a random draw of 7y from P(A ).
4) Generate a random draw of & from P(d - ).
5) Repeat 2)-4) N times to obtain N random draws of x7, & and 7.

Unfortunately it is hard to tell how long it takes to reach the stationary distribution or
how correlated are the values of successive iterations. In the state space models, state
variable at present time has high correlation with that at past time. Therefore, convergence of
the Gibbs sampler is unacceptably slow. Because It takes rejection method which takes a long
time computationally when the acceptance probability is close to zero. Hence rejection method
cannot be applied at state space model because of acceptance probability trouble. Generating a
candidate state by randomly perturbing all weights at once does not solve this problem, since
a randomly chosen direction in the high dimensional weight space is unlikely to be close to
that desired. What is needed is an elaboration of the Metropolis algorithm that makes use of
the gradient information provided by a candidate directions in which changes have a high
probability of being accepted. Geweke and Tanizaki(1999) used the Metropolis algorithm, an

attempt is made to generate random draws of x7, 7 and & directly from P(xdYr,7,0),

P(Axr, Y7,8) and P(8x7, Y7,7). The Metropolis algorithm within the Gibbs sampler is
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applied to random number generation. But Metropolis algorithm within Gibbs sampler is
inefficient of random walk nature.

The Hybrid Monte Carlo(HMC) method devised by Duane, Kennedy, Pendeleton, and
Roweth(1987) for use in quantum chromodynamics calculations does this. It also eliminates
much of the random walk aspect of the Metropolis algorithm, further speeding exploration of
the parameter space. The Hybrid Monte Carlo method are generated as follows:

(STEP 2)

1) Generate a new momentum vector x, from Gaussian distribution #(p)<exp{— K(pp}.

2) Run the leapfrog algorithm for L steps to reach a new configuration in the phase space
(P, 0.
3) Let (¥ (tm,d )= (37, pf") with probability

min[1, exp{— H(y",— p{") +H (1. n-1y, }]

where H( -, - ) is Hamiltonian.

It seems that the Markov chain Monte Carlo procedure is less computational than any other
estimators. However, the Markov chain Monte Carlo methods in the state-space model need a
lot of random draws compared with the independence Monte Carlo methods because in the
Markov chain Monte Carlo methods we usually discard the first 10% - 20% random draws
and a random draw is positively correlated with the next random draw in general. Moreover,
it is known that convergence of the Gibbs sampler is very slow especially in the case where
there is high correlation between x; and x;,—;. In particular we have the case where
rejection sampling does not work well, depending on the underlying assumptions on the
functional form or the error terms.

We adopt Hybrid Monte Carlo within Gibbs sampler to eliminates much of the random
walk. The smoothing random draws are generated as follows:

(STEP 3)

1) Given the state, sample ¥ and & from their conditional distributions.(STEP 1)

2) Given 7y and ¢, impute the states x, by HMC.(STEP 2)

5. Application and its conclusion

5.1 Application

Consider the following Gaussian state-space model in Shephard and Pitt(1997):

vw=utx,te &y N(0,0i)
x=¢x-1+79, 9~ NO,6% x; ~ N0,/ (1—¢2)
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where one observes y and is interested in sampling from the posterior distribution of x

and g. Our dataset consist of daily exchange rates of won/dollar from 1/3/1998 to 12/31/2001
(a total of T=1188 observations).

Let x=(x,-*,x7) and y=(y;,--,y7), and let prior for o, Inv — ¥*(ay, B); for g,
MNO,d2); for o2, Inv — x*(ay, B,); and for ($+1)/2, a beta prior with shape parameters

a3 and f3. Then the following conditional distributions can be easily sampled from:

ozvlqb,x ~ Inv—2(T+a, V)

where V=—T—_1|_71{alﬁl +x3(1— ¢2) + 22(?61— ¢xt—l)2}

x2(1— %)+ Zl(xtﬂ‘—‘ﬁxt)z
¢|02,,,x o< exp)— ;oz

Ax, y,u ~ inv—xz(az+ T.‘;;%_‘T{a’zﬂz‘*' g(y,—p—x,)z})

& g‘(yt—x:) 2,
NTA+d) ° Td,+

Once the parameter values are given, the negative log density is

Y 201 _ 42 _ _ 2
Ulx) = g (v /5 %)° x1(120%¢)+ =1 (x¢+1262”¢x,)

(1+¢) a3—0.5(1_¢) B;—0.5

Uy, x ~

The posterior density of x, given the parameter values, is proportional to expl{— U(x)}.

We implemented the following iterative sampling algorithm:

(1) Given x, we drew the parameters

i, 02, and ¢ from the above conditional
distributions.

(2) Whereas given u, 02, and ¢, we drew the state variable by the HMC.

This HMC within Gibbs sampler were run for 20,000 iterations and the results from the last
15,000 iterations are reported in table 1.

Parameter Mean Standard deviation Covariance
u -0.0249 0.0038 0.1449e-04 | 0.0369e-04 | -0.0447e-04
o 0.0838 0.0020 0.0369¢-04 | 0.0412e-04 | -0.0144e-04
0.9734 0.0060 -0.0447e-04 | -0.0144e-04 | 0.4421e-04

table 1. Bayes estimates of the parameters in the state-space model.
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5.2 Conclusion

The classical sampling methods such as resampling, rejection sampling and Markov Chain
Monte Carlo methods have convergence problems to apply nonlinear and non-Gaussian
methods.

The resampling procedure by Kitagawa (1997) has the disadvantage that it requires heavy
computation, especially for smoothing. However, this problem will be improved in the future
as computer progresses.

The disadvantages of the rejection sampling procedure (Tanizaki (1999)) are : (i) the
proposal density has to be appropriately chosen by a researcher (use of the transition equation
might be recommended, but not necessarily), (ii) it takes a long time computationally when
the acceptance probability is small (ie, we cannot predict how long the computer program
will run), and (iii) sometimes the supremum of the ratio of the target density does not exist.

The Markov chain Monte Carlo procedure proposed by Geweke and Tanizaki (1999) has the
following problems: (i) the proposal density has to be appropriately chosen by a researcher Gt
might be plausible to take the transition equation for the proposal density), and (ii)
convergence is very slow because the Gibbs sampler and the Metropolis-Hastings are
simultaneously used (remember that the random draw generated by the Markov chain Monte
Carlo method is correlated with the next one).

The above classical methods cannot be applied to daily exchange rate data due to the
convergence problems. Thus, we used Hybrid Monte Carlo in sampling state variables while
keeping Gibbs sampler for the sampling of parameters.

Although HMC has been found useful for Bayesian computations, many important issues
remain open. For example, how to choose tuning parameters in HMC, eg., the step size and
the number of the leapfrog iterations, is still difficult problem.
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