Comparison of a Microbiological Model Simulation with Microcosm Data

  • Lee, Jae-Young (OCEAN laboratory, School of Earth and Environmental Sciences(BK21), Seoul National University) ;
  • Tett, Paul (School of Life Sciences, Napier University) ;
  • Jones, Ken (Dunstaffnage Marine Laboratory)
  • Published : 2004.12.01

Abstract

Using nitrogen as the limiting nutrient, the default version of a microplankton-detritus model linked chlorophyll concentration to the autotroph nitrogen. However, phosphorus dynamics were added to simulate the results of a microcosm experiment. Using standard parameter values with a single value of microheterotroph fraction in the microplankton taken from the observed range, the best simulation successfully captured the main features of the time-courses of chlorophyll and particulate organic carbon, nitrogen and phosphorus, with root-mean-square error equivalent to 29% of particulate concentration. A standard version of microbiological model assumes complete internal cycling of nutrient elements; adding a term for ammonium and phosphate excretion by microheterotrophs did not significantly improve predictions. Relaxing the requirement for constant microheterotroph fraction resulted in an autotroph-heterotroph model AH, with dynamics resembling those of a Lotka-Volterra predator-prey system. AH fitted the microcosm data worse than did MP, justifying the suppression of Lotka-Volterra dynamics in MP. The paper concludes with a discussion of possible reasons for the success of the simple bulk dynamics of MP in simulating microplankton behaviour.

Keywords

References

  1. Caron, D. A., J. C. Goldman and M. R. Dennett, 1990. Carbon utilisation by the omnivorous flagellate Paraphysomonas imperjorata. Limnology and Oceanography, 35: 192-201
  2. Currie, D. J. and J. Kalff, 1984. A comparison of the abilities of freshwater algae and bacteria to aquire and retain phosphorus. Limnology and Oceanography, 29: 298-310
  3. Fasham, M. J. R., H. W. Ducklow and S. M. McKelvie, 1990. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. Journal ofMarine Research, 48: 591-639
  4. Fasham, M. J. A., J. L. Sarmineto, R. D. Slater, H. W. Ducklow and R. Williams, 1993. Ecosystem behaviour at Bermuda Station 's' and Ocean Weather Station 'India': a general circulation model and observational analysis. Global Biogeochemical Cycles, 7: 379-415
  5. Gasol, J.M., P. A. del Giorgio and C. M. Duarte, 1997. Biomass distribution in marine planktonic communities. Limnology and Oceanography, 42: 1353-136
  6. Gowen, R. J., P. Tett, and B. J. B. Wood, 1983. Changes in the major dihydroporphyrin plankton pigments during the spring bloom of phytoplankton in two Scottish sea-lochs. Journal of the Marine Biological Association ofthe United Kingdom, 63: 27-36
  7. Hastings, A., 1996. Population Biology:concepts and models. Springer, New York, 220+xvi pp
  8. Holligan, P. M., , P.J.1. Williams, D. Purdie and R.P. Harris, 1984. Vertical distribution and partitioning of organic carbon in mixed, frontal and stratified waters of the English Channel. Marine Ecology Progress Series, 14: 201-213
  9. Holling, C. S., 1959. Some characteristics of simple types of predation and parasitism. Canadian Entomologist, 91: 385-398
  10. Holm-Hansen, O., C. F. Lorenzen, R. W. Homes and J. D. H. Strickland, 1965. Fluorometric determination of chlorophyll. Journal du Conseil permanent international pour l'Exploration de la Mer, 30: 3-15
  11. Huthnance, J. M., J.I. Allen, A.M. Davies, D.J. Hydes, I.D. James, J.E. Jones, R.K. Lowry, T.J. Moffat, A.J. Pomroy and R. Proctor, 1993. Towards water quality models. Philosophical Transactions of the Royal Society ofLondon, A340: 569-584
  12. Hydes, D. J., Kelly-Gerreyn, B. A., Prandle, D., Proctor, R. & Thomson, S., 1997. The biogeochemistry of nitrogen in the southern North Sea: the development of a mathematical model based on the results of the NERC-North Sea Programme surveys 1988 and 1989. Southampton Oceanography Centre Report, 5, Southampton, U.K., pp. 89
  13. Jones, K. J., 1979. Studies on nutrient levels and phytoplankton growth in a Scottish Sea Loch. Ph.D. thesis, University of Strathclyde
  14. Jones, K. J., P. Tett, P., A. C. Wallis and B. J. B. Wood, 1978a. Investigation of a nutrient-growth model using a continuous culture of natural phytoplankton. Journal of the Marine Biological Association of the United Kingdom, 58: 923-941
  15. Jones, K. J., P. Tett, A. C. Wallis and B. J. B. Wood, 1978b. The use of small, continuous and multispecies cultures to investigate the ecology of phytoplankton in a Scottish sea-loch. Mitteilungen - Internationale Vereinigung fu(e)r theoretische und angewandte Limnologie, 21: 398-412
  16. Lee, J.-Y., P. Tet and K.-R. Kim, 2003. Parameterising a microplankton ModeL J. Korean Soc. Oceanogr.,38: 185-210
  17. Legendre, L. and F. Rassoulzadegan, 1995. Plankton and nutrient dynamics in marine waters. Ophelia, 41: 153-172
  18. Richardson, K., T. G. Nielsen, F. B. Pedersen, J. P. Heiman, B. $L\phikkegard$ and H. Kaas, 1998. Spatial heterogeneity in thestructure of the planktonic food web in the North Sea. Marine Ecology - Progress Series, 168: 197-211
  19. Smith, C. L. and P. Tett, 2000. A depth resolving numerical model of physically forced microbiology at the European shelf edge. Journal ofMarine Systems, 26: 1-36
  20. Taylor, A. H. and I. Joint, 1990. A steady-state analysis of the microbial loop in stratified systems. Marine Ecology - Progress Series, 59: 117
  21. Tett, P., 1973. The use of log-normal statistics to describe phytoplankton populations from the Firth of Lome area. Journal ofexperimental marine Biology and Ecology, 11: 121-136
  22. Tett, P., 1990. A three layer vertical and microbiological processes model for shelf seas. 14, Proudman Oceanographic Laboratory, pp. 85
  23. Tett, P. and M. R. Droop, 1988. Cell quota models and planktonic primary production. In Handbook of Laboratory Model Systems for Microbial Ecosystems (ed. Wimpenny, J. W. T.), 2, 177-233. CRC Press, Florida
  24. Tett, P., A. Edwards, B. Grantham, K. Jones and M,. Turner, 1988. Microplankton dynamics in an enclosed coastal water column in summer. In Algae and the Aquatic Environment (Contributions in honour of J. W.G.Lund, F.R.S.) (ed. Round, F. E.), 339-368. Biopress, Bristol, U.K
  25. Tett, P. and C. Grenz, 1994. Designing a simple microbiologicalphysical model for a coastal embayment. Vie et Milieu, 44: 39-58
  26. Tett, P., S. L. Heaney and M. R. Droop, 1985. The Redfield ratio and phytoplankton growth rate. Journal ofthe Marine Biological Association of the United Kingdom, 65: 487-504
  27. Tett, P., I. Joint, D. Purdie, M. Baars, S. Oosterhuis, G. Daneri. F. Hannah, D.K. Mills, D. Plummer, A. Pomroy, A.W, Walne and H.J. Witte, 1993. Biological consequences of tidal stirring gradients in the North Sea. Philosophical Transactions of the Royal Society ofLondon, A340: 493-508
  28. Tett, P. and C. Smith, 1997. Modelling benthic-pelagic coupling in the North Sea. (New Challenges for North Sea Research - 20 years after FLEX '76, Hamburg, 21-23 Oct 1996). Berichte aus dem Zentrum fur Meeres- und Klimaforschung. Reihe Z: lnterdiszipliniire Zentrumsberichte, 2: 235-243
  29. Tett, P. and A. Walne, 1995. Observations and simulations ofhydrography, nutrients and plankton in the southern North Sea. Ophelia, 42, 371-416
  30. Wilson, H. C. and P. Tett, 1997. Comparing models for phytoplankton seasonal cycles in the north east Atlantic (abstract). (Winter and Annual General Meeting, Warwick, 15-18 December 1997), British Ecological Society. p. 61