• Title/Summary/Keyword: Stand Fan

Search Result 10, Processing Time 0.02 seconds

Design of a Wind Tunnel for Plug Seedlings Production under Artificial Light and Aerodynamic Characteristics above Plug Stand (인공광하의 공정육묘용 풍동 설계 및 공정묘 개체군상의 공기역학적 특성)

  • 김용현;고재풍수
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.429-435
    • /
    • 1996
  • A wind tunnel consisting of two air flow conditioners with polycarbonate pipes, a plant growth room, a suction fan and fan controller, and fluorescent lamps, was designed to investigate the interactions between the growth of plug seedlings under artificial light and their Physical environments. Light transmissivities in the plant growth room based on the photosynthetic photon flux density and photosynthetically active radiation was appeared to be 96.3% and 96.8%, respectively. Measurement showed a uniformity in the vertical profiles of air current speed at the middle and rear regions of plug trays in wind tunnel. This result indicated that the development of a wind tunnel based on the design criteria of the American Society of Mechanical Engineers was adequate. Air current speed inside the plug stand was significantly decreased due to the resistance by the leaves of plug seedlings and boundary layer developed over and below the plug stand. Driving force to facilitate the diffusion of gas inside the plug stand might be regarded as extremely low. Aerodynamic characteristics above the plug stand under artificial light were investigated. As the air current speed increased, zero plane displacement decreased but roughness length and frictional velocity increased. Zero plane displacement linearly increased with the average height of plug seedlings. The wind tunnel developed in this study would be useful to investigate the effects of air current speed on the microclimate over and inside the plug stand and to collect basic data for a large-scale plug production under artificial light in a semi-closed ecosystem.

  • PDF

Local damage detection of a fan blade under ambient excitation by three-dimensional digital image correlation

  • Hu, Yujia;Sun, Xi;Zhu, Weidong;Li, Haolin
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.597-606
    • /
    • 2019
  • Damage detection based on dynamic characteristics of a structure is one of important roles in structural damage identification. It is difficult to detect local structural damage using traditional dynamic experimental methods due to a limited number of sensors used in an experiment. In this work, a non-contact test stand of fan blades is established, and a full-field noncontact test method, combined with three-dimensional digital image correlation, Bayesian operational modal analysis, and damage indices, is used to detect local damage of a fan blade under ambient excitation without use of baseline information before structural damage. The methodology is applied to detect invisible local damage on the fan blade. Such a method has a seemingly high potential as an alternative to detect local damage of blades with complex high-precision surfaces under extreme working conditions because it is a noncontact test method and can be used under ambient excitation without human participation.

Structural Design and Analysis for Duct Stand of Blowers (송풍기 덕트 스탠드의 구조 설계 및 해석)

  • Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.149-153
    • /
    • 2023
  • In this study, structural design and analysis of a duct stand for blowers were performed. This structure was an axial fan and blower for wind tunnel of the vehicle environmental test chamber. The design of the blower duct stand support structure was performed by investigation on various loads. Additionally, self-weight of the motor and weight of the duct were investigated and applied. The duct stand structure was designed by analyzing the load. The safety of the structural design results was evaluated through finite element analysis. Finally, the safety of the design result was verified.

Dynamic Characteristics of Ducted Fan: A Study (덕트 팬의 동특성 연구)

  • Baek, Sang Min;Kwon, Jae Ryong;Rhee, Wook
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.84-91
    • /
    • 2017
  • The dynamic characteristics of a ducted fan in hovering condition were investigated. The section properties of the fan blade were calculated, and a simulation model was developed according to the rotor system components. Dynamic analyses were conducted relative to the rotational speed and the collective pitch. The proposed ducted fan system showed less aero-elastic instability within the designated operating ranges. To verify the analytical approach, a rotating test stand of the ducted fan was set up. A functional test of the assembly was carried out to determine the kinematics and interference between components. The non-rotating and rotating normal frequencies were measured by excitation of the collective pitch using hydraulic actuators. The results indicated a correlation between the test equipment and the simulation model.

Smart Power Management System for Leisure-ship

  • Park, Do-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.749-753
    • /
    • 2011
  • A leisure ship has a stand-alone type power system, and a generator is in use on this condition. But the generator cannot be operated in condition of leisure activity, ocean measurement and etc, because of environment and noise. Recently, renewable energy system is connected with power system of the leisure-ship for saving energy. The renewable energy system can not supply the stable power to leisure-ship because power generation changes according to weather condition. And most of the leisure ship is operated without methodical power management system. This study's purpose is to develop SPMS(Smart Power Management System) algorithm using the renewable energy (photovoltaic, wind power and etc.). The proposed algorithm is able to supply stable the power according to operation mode. Furthermore, the SPMS manages electric load (sailing and communication equipment, TV, fan, etc.) and reduces operating times of the generator. In this paper, the proposed algorithm is realized and executed by using LabVIEW. As a result, the hour for operating the generator is minimized.

A Simplified Closed Static Chamber Method for Measuring Methane Flux in Paddy Soils (논토양(土壤)의 메탄 배출(排出) 측정(測定)을 위한 간역폐쇄정태(簡易閉鎖靜態) Chamber법(法))

  • Shin, Yong-Kwang;Lee, Yang-Soo;Yun, Seong-Ho;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.183-190
    • /
    • 1995
  • Various factors such as sampling height in the chamber, sampling interval, sampling time at daytime and the effects of pedoturbation on methane emission during chamber installation were evaluated using a simplified closed static chamber method to measure methane flux in paddy soils. Sampling height of the chamber for representative samples was 65cm. An additional DC fan was required to attain an even methane gradient in the chamber. Considering the change of methane concentration and air temperature in the chamber, sampling is recommended to finish within 30 minutes after starting sampling. The aim of setting DC fan in the chamber was to get the thermal equilibrium in the chamber as well as the representative samples. Suitable time to collect the gas samples representing the day's methane flux was 0900~1200 hours. Gas sampling was possible even after installation of small chambers if the elapsed time was more than 6 hours and supporting stand would be to be added to minimize pedoturbation.

  • PDF

Controlling robot by image-based visual servoing with stereo cameras

  • Fan, Jun-Min;Won, Sang-Chul
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.229-232
    • /
    • 2005
  • In this paper, an image-based "approach-align -grasp" visual servo control design is proposed for the problem of object grasping, which is based on the binocular stand-alone system. The basic idea consists of considering a vision system as a specific sensor dedicated a task and included in a control servo loop, and we perform automatic grasping follows the classical approach of splitting the task into preparation and execution stages. During the execution stage, once the image-based control modeling is established, the control task can be performed automatically. The proposed visual servoing control scheme ensures the convergence of the image-features to desired trajectories by using the Jacobian matrix, which is proved by the Lyapunov stability theory. And we also stress the importance of projective invariant object/gripper alignment. The alignment between two solids in 3-D projective space can be represented with view-invariant, more precisely; it can be easily mapped into an image set-point without any knowledge about the camera parameters. The main feature of this method is that the accuracy associated with the task to be performed is not affected by discrepancies between the Euclidean setups at preparation and at task execution stages. Then according to the projective alignment, the set point can be computed. The robot gripper will move to the desired position with the image-based control law. In this paper we adopt a constant Jacobian online. Such method describe herein integrate vision system, robotics and automatic control to achieve its goal, it overcomes disadvantages of discrepancies between the different Euclidean setups and proposes control law in binocular-stand vision case. The experimental simulation shows that such image-based approach is effective in performing the precise alignment between the robot end-effector and the object.

  • PDF

Research on Investigation on the Spot in Relation to Electrical Safety of Electrical Installation in Elementary.Middle.High School (전기안전에 대한 초.중.고등학교 전기시설물의 현장조사 연구)

  • Gil, Hyoung-Jun;Choi, Chung-Seog;Lee, Ki-Yeon;Moon, Hyun-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.99-105
    • /
    • 2007
  • This paper describes the investigation on the spot in relation to electrical safety of electrical installation in elementary middle high school. The investigation was carried out for power receiving system, classroom, chemistry room, music hall and so on. The investigation on the spot was performed by researcher, the related expert, engineer with over fifteen years of industry experience all over the country. As a result of investigation on the spot to 41 schools, common grounding methods at power receiving system were dominant. The risk factors include absence of control box of electric fan, non-installation of earth leakage circuit breaker to power source of experiment stand, use of non-grounding outlet.

Sensitivity of Seismic Response and Fragility to Parameter Uncertainty of Single-Layer Reticulated Domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1607-1616
    • /
    • 2018
  • Quantitatively modeling and propagating all sources of uncertainty stand at the core of seismic fragility assessment of structures. This paper investigates the effects of various sources of uncertainty on seismic responses and seismic fragility estimates of single-layer reticulated domes. Sensitivity analyses are performed to examine the sensitivity of typical seismic responses to uncertainties in structural modeling parameters, and the results suggest that the variability in structural damping, yielding strength, steel ultimate strain, dead load and snow load has significant effects on the seismic responses, and these five parameters should be taken as random variables in the seismic fragility assessment. Based on this, fragility estimates and fragility curves incorporating different levels of uncertainty are obtained on the basis of the results of incremental dynamic analyses on the corresponding set of 40 sample models generated by Latin Hypercube Sampling method. The comparisons of these fragility curves illustrate that, the inclusion of only ground motion uncertainty is inappropriate and inadequate, and the appropriate way is incorporating the variability in the five identified structural modeling parameters as well into the seismic fragility assessment of single-layer reticulated domes.

Research and development on image luminance meter of road tunnel internal and external (도로터널 내/외부의 영상휘도 측정기 연구개발)

  • Jang, Soon-Chul;Park, Sung-Lim;Ko, Seok-Yong;Lee, Mi-Ae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • This paper introduces the development of imaging luminance meter which measures the luminances of external/internal road tunnel. The developed imaging luminance meter complies with both L20 method and Veiling luminance method of the international standards, CIE88. In this paper the L20 method is mainly presented because most of tunnels currently adapt L20 method. The developed system has an embedded computer to operate at stand-alone. The system has a ethernet port, a heater, a fan, a defroster, a wiper and sun shielder. Compensation algorithm is applied for correcting non-linear responses to the luminance and integration time. The accuracy of measurement is less than 1% when it calibrated at the public certification institute. The developed system was also tested at the real field, road tunnel. The test results were very similar with the reference luminance meter and showed that the developed system operates well at the real field. Partial sensor saturations were happened to show the less luminance, because there were the high reflecting objects in the real field. Further study should be followed for high luminance measurement.