• Title/Summary/Keyword: Stacking distance

Search Result 32, Processing Time 0.024 seconds

Characteristics on Inconsistency Pattern Modeling as Hybrid Data Mining Techniques (혼합 데이터 마이닝 기법인 불일치 패턴 모델의 특성 연구)

  • Hur, Joon;Kim, Jong-Woo
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.1
    • /
    • pp.225-242
    • /
    • 2008
  • PM (Inconsistency Pattern Modeling) is a hybrid supervised learning technique using the inconsistence pattern of input variables in mining data sets. The IPM tries to improve prediction accuracy by combining more than two different supervised learning methods. The previous related studies have shown that the IPM was superior to the single usage of an existing supervised learning methods such as neural networks, decision tree induction, logistic regression and so on, and it was also superior to the existing combined model methods such as Bagging, Boosting, and Stacking. The objectives of this paper is explore the characteristics of the IPM. To understand characteristics of the IPM, three experiments were performed. In these experiments, there are high performance improvements when the prediction inconsistency ratio between two different supervised learning techniques is high and the distance among supervised learning methods on MDS (Multi-Dimensional Scaling) map is long.

  • PDF

A Computerized Design System of the Axial Fan Considering Performance and Noise Characteristics (성능 및 소음특성을 고려한 축류 팬 설계의 전산 체계)

  • Lee, Chan;Kil, Hyun-Gwon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.48-53
    • /
    • 2010
  • A computerized design system of axial fan is developed for constructing 3-D blade geometry and predicting both aerodynamic performance and noise. The aerodynamic blading design of fan is conducted by blade angle distribution, camber line determination, airfoil thickness distribution and blade element stacking along spanwise distance. The internal flow and the aerodynamic performance of designed fan are predicted by the through-flow modeling technique with flow deviation and pressure loss correlations. Based on the predicted internal flow field and performance data, fan noise is predicted by two models for discrete frequency and broadband noise sources. The present predictions of the flow distribution, the performance and the noise level of actual fans are well agreed with measurement results.

Designing a Horizontal Yard Layout in Port Container Terminals Using Simulation (시뮬레이션을 이용한 컨테이너 터미널의 수평배치 장치장의 배치도 설계)

  • Jeon, Su-Min;Kim, Kap-Hwan;Ryu, Kwang-Ryel
    • IE interfaces
    • /
    • v.20 no.1
    • /
    • pp.49-57
    • /
    • 2007
  • The design of the container stacking yard influences significantly the productivity of handling operations in port container terminals. This study proposes methods for determining specifications of the yard considering the travel distance of vehicles and the storage capacity of yards. For a given length and width of a yard, it is discussed how to determine the layout and the dimension of yard blocks. The alternatives of the yard layout are evaluated by using a simulation study.

Effects of Mask Misalignment and Crystal Defects on the Breakdown characteristics in the PN Junction Isolation (마스크 오정렬 및 결정 결함이 PN 접합 아이솔레이션의 항복 특성에 미치는 영향)

  • Jo, Gyeong-Ik;Baek, Mun-Cheol;Song, Seong-Hae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.2
    • /
    • pp.47-53
    • /
    • 1984
  • Breakdown characteristics, specifically, soft breakdown phenomena of the PN junction isolation were studied in terms of their dependence on the mask misaliglment and the amount of process-related defects. Varying the distance between the buried layer and the isolation by intentional misalignment of the isolation masts had no effects on the soft breakdown phenomena except for the change of the breakdown voltage. The soft breakdown phenomena, as characterized as a state of excessive reverse current below the breakdown voltage, were found out to result mainly from the oxidation-induced stacking faults (OSF) introduced during the fabrication process.

  • PDF

Analysis of Crustal Velocity Structure Beneath Gangwon Province, South Korea, Using Joint Inversion of Receiver Functions and Surface Wave Dispersion (수신함수와 표면파 분산의 연합 역산을 사용한 강원도 지역 하부의 지각속도구조 분석)

  • Jeong-Yeon Hwang;Sung-Joon Chang
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.277-291
    • /
    • 2023
  • To analyze the crustal velocity structures beneath 21 broadband seismic stations in Gangwon Province, South Korea, we first applied the H-κ stacking method to 139 teleseismic event data (Mw ≥ 5.8 and the epicentral distance of 30° - 90°) occurring between March 18, 2019 and December 31, 2022 to estimate the Moho depths and Vp/Vs ratios beneath each station. The Moho depths and Vp/Vs ratios from the H-κ stacking method range from 24.9 to 33.2 km depth and 1.695 - 1.760, respectively, and the estimated Vp/Vs ratios were applied to the joint inversion of receiver functions and surface wave dispersion to obtain 1-D crustal velocity models beneath each station. The resulting Moho depths range from 25.9 to 33.7 km depth, similar to the results from the H-κ stacking method. Moho depth results from the both methods are generally consistent with Airy's isostasy. The 1-D crustal velocity models confirm that the existence of 2 km thick low-velocity layers with P-wave velocities of 5 km/s or less at some stations in the Taebaeksan basin, and at the stations CHNB and GAPB in northern Gangwon Province, which are located above the Cenozoic sedimentary layer. The station SH2B, although not overlying a sedimentary layer, has a low P-wave velocity near the surface, which is probably due to various factors such as weathering of the bedrock. We also observe a velocity inversion with decreasing velocity with depth at all stations within 4 - 12 km depths, and mid-crustal discontinuities possibly due to density differences in the rocks at around 10 km depth below some stations.

Study of Mechanical Properties and Porosity of Composites by Using Glass Fiber Felt (유리섬유 부직포 사용에 따른 복합재의 기공률 및 물성에의 영향 분석)

  • Lee, Ji-Seok;Yu, Myeong-Hyeon;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.42-46
    • /
    • 2022
  • In this study, when the carbon fiber composite was manufactured, the correlation between the porosity and mechanical properties according to the number of glass fiber felts laminated together and the stacking sequence was confirmed. The carbon fiber composite was manufactured by stacking glass fiber felts, which are highly permeable materials, and using vacuum assisted resin transfer molding (VARTM). Porosity was measured by photographing the cross-section of the specimen with an optical microscope and then using porosity calculation code of MATLAB, and mechanical properties were measured for tensile strength, modulus by tensile test. Furthermore, Pearson correlation coefficient between porosity and mechanical properties was calculated to confirm the correlation between two variables. As a result, the number of glass fiber felt increased and the distance from the center of laminated composites increased, the porosity increasing were confirmed. In addition, tensile strength/modulus showed a weak positive correlation with porosity. Also, in order to confirm the effect of only porosity on tensile strength and modulus, mechanical properties calculated by CLPT (Classical Laminate Plate Theory) and experimental values were compared, and the difference in tensile strength showed a strong positive correlation with porosity and the difference in modulus showed a weak positive correlation with porosity.

Design of a Ka-band Bandpass Filter Using LTCC Technology (LTCC 기술을 이용한 Ka-밴드 대역통과필터 설계)

  • 최병건;박철순
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.214-217
    • /
    • 2004
  • In this paper, a Ka-band LTCC (low temperature co-fired ceramic) narrow bandpass filter (BPF) is firstly presented. This BPF shows very narrow 3dB fractional bandwidth of 4.5 % centered at 28.7㎓. The advantages of multi-layered LTCC technology such as high integration and vertical stacking capabilities were employed to design three-dimensional interdigital end-coupled embedded microstrip narrow BPF. The difficulties in controlling the precise distance between two adjacent resonators in LTCC end-coupled BPF were overcome by locating the resonators on different layers. The measured insertion loss is 3dB at 28.7㎓, pass band is from 27.9 ㎓ to 29.2 ㎓, and the return loss in the pass band is less than 10 dB.

The fabrication of bulk magnet stacked with HTS tapes for the magnetic levitation

  • Park, Insung;Kim, Gwantae;Kim, Kyeongdeok;Sim, Kideok;Ha, Hongsoo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.47-51
    • /
    • 2022
  • With the innovative development of bio, pharmaceutical, and semiconductor technologies, it is essential to demand a next-generation transfer system that minimizes dust and vibrations generated during the manufacturing process. In order to develop dust-free and non-contact transfer systems, the high temperature superconductor (HTS) bulks have been applied as a magnet for levitation. However, sintered HTS bulk magnets are limited in their applications due to their relatively low critical current density (Jc) of several kA/cm2 and low mechanical properties as a ceramic material. In addition, during cooling to cryogenic temperatures repeatedly, cracks and damage may occur by thermal shock. On the other hand, the bulk magnets made by stacked HTS tapes have various advantages, such as relatively high mechanical properties by alternate stacking of the metal and ceramic layer, high magnetic levitation performance by using coated conductors with high Jc of several MA/cm2, consistent superconducting properties, miniaturization, light-weight, etc. In this study, we tried to fabricate HTS tapes stacked bulk magnets with 60 mm × 60 mm area and various numbers of HTS tape stacked layers for magnetic levitation. In order to examine the levitation forces of bulk magnets stacked with HTS tapes from 1 to 16 layers, specialized force measurement apparatus was made and adapted to measure the levitation force. By increasing the number of HTS tapes stacked layers, the levitation force of bulk magnet become larger. 16 HTS tapes stacked bulk magnets show promising levitation force of about 23.5 N, 6.538 kPa at 10 mm of levitated distance from NdFeB permanent magnet.

Effect of Various Parameters on Stress Distribution around Holes in Mechanically Fastened Composite Laminates (기계적으로 체결된 복합재료 평판에서 다양한 인자의 영향에 따른 원공 주위의 응력분포)

  • Choi Jae-Min;Chun Heoung-Jae;Byun Joon-Hyung
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2005
  • With the wide applications of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joints have become a very important research area because the joints are often the weakest areas in composite structures. This paper presents an analytical study of the stress distributions in mechanically single-fastened and multi-fastened composite laminates. The finite element models which treat the pin and hole contact problem using a contact stress analysis are described. A dimensionless stress concentration factor is used to compare the stress distributions in composite laminates quantitatively In the case of single-pin loaded composite laminate, the effects of stacking sequence, the ratio of a hole diameter and the width of a laminate (W/D ratio), the ratio of hole diameter and distance from edge to hole (E/D ratio), friction coefficient and clamping force are considered. In the case of multi-pin loaded composite laminate, the influence of the number of pins, pitch distance, number of rows, row spacing and hole pattern are considered. The results show that P/D ratio and E/D ratio affect more on stress distributions near the hole boundary than the other factors. In the case of multi-pin loaded composite laminate, the stress concentration in the double column case is better than the other cases of multi-pin loaded composite laminate.

Ultrasonic Velocity Measurements of Engineering Plastic Cores by Pulse-echo-overlap Method Using Cross-correlation (다중 반사파 중첩 자료의 상호상관을 이용한 엔지니어링 플라스틱 코어의 초음파속도 측정)

  • Lee, Sang Kyu;Lee, Tae Jong;Kim, Hyoung Chan
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • An automated ultrasonic velocity measurement system adopting pulse-echo-overlap (PEO) method has been constructed, which is known to be a precise and versatile method. It has been applied to velocity measurements for 5 kinds of engineering plastic cores and compared to first arrival picking (FAP) method. Because it needs multiple reflected waves and waves travel at least 4 times longer than FAP, PEO has basic restriction on sample length measurable. Velocities measured by PEO showed slightly lower than that by FAP, which comes from damping and diffusive characteristics of the samples as the wave travels longer distance in PEO. PEO, however, can measure velocities automatically by cross-correlating the first echo to the second or third echo, so that it can exclude the operator-oriented errors. Once measurable, PEO shows essentially higher repeatability and reproducibility than FAP. PEO system can diminish random noises by stacking multiple measurements. If it changes the experimental conditions such as temperature, saturation and so forth, the automated PEO system in this study can be applied to monitoring the velocity changes with respect to the parameter changes.