DOI QR코드

DOI QR Code

Ultrasonic Velocity Measurements of Engineering Plastic Cores by Pulse-echo-overlap Method Using Cross-correlation

다중 반사파 중첩 자료의 상호상관을 이용한 엔지니어링 플라스틱 코어의 초음파속도 측정

  • Lee, Sang Kyu (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Lee, Tae Jong (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Hyoung Chan (Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • Received : 2013.03.25
  • Accepted : 2013.08.23
  • Published : 2013.08.31

Abstract

An automated ultrasonic velocity measurement system adopting pulse-echo-overlap (PEO) method has been constructed, which is known to be a precise and versatile method. It has been applied to velocity measurements for 5 kinds of engineering plastic cores and compared to first arrival picking (FAP) method. Because it needs multiple reflected waves and waves travel at least 4 times longer than FAP, PEO has basic restriction on sample length measurable. Velocities measured by PEO showed slightly lower than that by FAP, which comes from damping and diffusive characteristics of the samples as the wave travels longer distance in PEO. PEO, however, can measure velocities automatically by cross-correlating the first echo to the second or third echo, so that it can exclude the operator-oriented errors. Once measurable, PEO shows essentially higher repeatability and reproducibility than FAP. PEO system can diminish random noises by stacking multiple measurements. If it changes the experimental conditions such as temperature, saturation and so forth, the automated PEO system in this study can be applied to monitoring the velocity changes with respect to the parameter changes.

여러 가지 초음파 속도 측정법 중 비교적 정확하고 다양한 목적에 활용될 수 있다고 알려진 반사파 중첩법(pulseecho-overlap method)에 의해 초음파의 전파시간을 자동으로 측정할 수 있는 시스템을 구축하고, 엔지니어링 플라스틱 시험편에 대한 초음파 속도를 초동발췌법(first arrival picking method)과 비교하였다. 다섯 가지 종류의 엔지니어링 플라스틱 코어에 대해 반사파 중첩법과 초동발췌법에 의해 초음파 속도를 측정한 결과, 반사파 중첩법은 초동발췌법보다 최소 4배로 긴 다중반사파 자료가 필요하므로 매질의 감쇠특성에 의해 측정가능한 시험편의 길이에 제약이 있다. 또한 측정되는 속도는 초동발췌법에 의한 속도보다 낮게 측정되는 경향을 보였으며, 수신된 파형을 분석한 결과, 이는 전파거리가 길어짐에 따른 매질의 감쇠 및 분산특성에 의한 영향으로 해석되었다. 상호상관을 이용하여 제1반사파가 제2반사파 및 제3반사파와 가장 잘 중첩되는 시간을 실시간으로 자동으로 발췌하도록 프로그램하여 실험자에 의한 측정 편차가 개입될 가능성을 배제함으로써 반복성과 재현성을 높였다. 또한, 실험의 조건이 변하지 않는 경우는 중합수를 늘림으로서 무작위 잡음에 의한 측정오차를 줄일 수 있으며, 실험 조건이 변하는 경우는 속도변화 모니터링에도 활용이 가능하다.

Keywords

References

  1. ASTM D2845-00 Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants.
  2. D'Arrigo, G., Marietti, P., and Tartaglia, P., 1970, A new form of the Sing-Around Technique for ultra-sonic velocity measurements, Il Nuovo Cimento B Serie, 69, 105-114. https://doi.org/10.1007/BF02710351
  3. Delsing, J., 1998, Method for measuring in a fluid with the aid of sing-around technique, U.S. Patent No. 5,796,009.
  4. Horvath-Szabo, G., Hiland, H., and Hgseth, E., 1994, An automated apparatus for ultrasound velocity measurements improving the pulse-echo-overlap method to a precision better than 0.5 ppm in liquids, Rev. of Sci. Inst., 65, 1644-1648. https://doi.org/10.1063/1.1144853
  5. Lee, S. K., Lee, T. J., and Sung, N. H., 2010, Characteristics of rock samples from Seokmo Island using an automatedcontinuous seismic velocity measuring system, J. of Kor. Soc. Min. and Ener. Res. Eng., 47, 756-770.
  6. Lee, S. K., and Lee, T. J., 2011, A study on the factors affected on the P- and S-wave velocity measurement of the acrylic and stainless steel core, Geophysics and Geophysical Exploration, 14, 305-315.
  7. Lee, S. K., Choi, J., Cheon, D.-S., and Lee, T. J., 2011, Seismic velocity change due to micro-crack accumulation of rock samples from Seokmo Island, Korea, Geophysics and Geophysical Exploration, 14, 324-334.
  8. Obert, L. S., Windes, L., and Duvall, W. I., 1946, Standardized tests for determining the physical properties of mine rock, U. S. Bur. Mines Rep. Invest. 3891.
  9. Palanichamy, P., Joseph, A., Jayakumar, T., and Raj, B., 1995, Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel, NDT & E International, 28(3), 179-185. https://doi.org/10.1016/0963-8695(95)00011-L
  10. Pantea, C., Rickel, D. G., Migliori, A., Leisure, R. G., Zhang, Z., Zhao, Y. S., El-Khatib, S., and Li, B. S., 2005, Digital ultrasonic pulse-echo overlap system and algorithm for unambiguous determination of pulse transit time, Rev. of Sci. Inst., 76(11), 114902-114902-9. https://doi.org/10.1063/1.2130715
  11. Papadakis, E. P., 1976, New, compact instrument for pulseecho-overlap measurements of ultrasonic wave transit times, Rev. Sci. Instrum., 47(7), 806-813. https://doi.org/10.1063/1.1134757
  12. Pathak, L., Murali, N., and Amirtha, V. P., 1984, Stand-alone pulse-echo-overlap facility for ultrasonic wave time measurements, Rev. Sci. Instrum., 55(11), 1817-1822. https://doi.org/10.1063/1.1137666
  13. Takagi, T., and Teranishi, H., 1987, Ultrasonic speed in compressed liquid by a sing-around method, J. Chem. Thermodynamics, 19, 1299-1304. https://doi.org/10.1016/0021-9614(87)90007-3
  14. Tardajos, Pena, and Aicart, 1986, Speed of sound in pure liquids by a pulse-echo-overlap method, J. Chem. Thermodynamics, 18, 683-689. https://doi.org/10.1016/0021-9614(86)90071-6