DOI QR코드

DOI QR Code

Amplitude Variation Analysis for Deep Sea Seismic Data in the Ulleung Basin, East Sea

동해 울릉분지 심해 탄성파 탐사자료 진폭변화분석

  • Cheong, Snons (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resouces) ;
  • Kim, Youngjun (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resouces) ;
  • Kim, Byungyup (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resouces) ;
  • Koo, NamHyung (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resouces) ;
  • Lee, Ho-Young (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resouces)
  • 정순홍 (한국지질자원연구원 석유해저연구본부) ;
  • 김영준 (한국지질자원연구원 석유해저연구본부) ;
  • 김병엽 (한국지질자원연구원 석유해저연구본부) ;
  • 구남형 (한국지질자원연구원 석유해저연구본부) ;
  • 이호영 (한국지질자원연구원 석유해저연구본부)
  • Received : 2013.05.03
  • Accepted : 2013.08.14
  • Published : 2013.08.31

Abstract

The amplitude variation with offset of seismic data can detect fluids in the sediment and resolve the petrophysical properties of hydrocarbons in the subsurface. We analyzed and described the amplitude variation in deep sea seismic data obtained from the Ulleung Basin, East Sea. By inspecting seismic CDP-offset and CDP-angle gathers which show a bright reflection event, we decided a target zone for amplitude variation analysis. From the seismic angle gather at the middle of Ulleung Basin, we recognized amplitude increase or decrease versus offset on the intercept-gradient curve. Using the product attribute and Poisson's ratio change attribute computed in terms of intercept with gradient, the top and the base of gas saturated sediments were described. The area of amplitude variation suggestive of the presence of gas saturated sediments is shown at the depth of 3 s traveltime. Anomalous features of seismic amplitude in the Ulleung Basin were classified by the crossplot of intercept and gradient. The background trend of crossplot between intercept and gradient shows an inverse proportional relation that is common for wet sediments. Anomalous amplitudes of Class III fall into the first and the third quadrants on crossplots. We inferred regional gas/water saturated area with the horizontal dimension of 150 m in the Ulleung Basin by cross-section with respect to cross-plot anomaly.

탄성파 탐사자료의 진폭변화를 분석하면 지층의 유체를 탐지하고 석유 가스 저류층의 정밀한 물성 도출이 가능하다. 본 연구는 동해 울릉분지의 심해 탄성파 탐사자료에 대하여 진폭변화를 분석하고 정리하였다. 중합단면에서 반사신호가 강하게 기록된 영역의 탄성파 공통깊이점-벌림 모음과 공통깊이점-반사각 모음을 관찰하여 진폭변화가 뚜렷한 영역을 선별하였다. 울릉분지의 중앙부 탄성파 탐사 반사각 모음의 주시 3200과 3300 ms 구간 탄성파 신호에 대한 종축절편과 진폭구배 속성을 계산하여 벌림에 따른 진폭 증가 및 감소를 확인하였다. 종축절편과 진폭구배를 곱한 속성과 합한 속성을 도출하여 울릉분지 퇴적층의 가스부존 가능 영역 상부와 하부 경계를 구분하였다. 가스로 포화된 퇴적층의 탄성파 진폭변화 특성을 보이는 영역은 탄성파주시 3 s 인근에서 간헐적으로 나타났다. 교차도표를 이용하여 울릉분지 탄성파자료의 진폭변화를 유형별로 확인할 수 있었다. 배경매질의 종축절편과 진폭구배는 함수 퇴적층의 일반적인 특징인 반비례관계를 보였고 가스함유 퇴적층의 진폭변화를 보이는 표본은 교차도표 단면상에서 1사분면과 3사분면에 위치하였다. 교차도표에서 선택된 표본들을 중합단면에서 추적한 결과 울릉분지 중앙부의 심해 퇴적지층 중 진폭변화 유형 3에 해당하는 영역이 수평연장 150 m 내로 분포함을 유추할 수 있었다.

Keywords

References

  1. Castagna J. P., and Backus, M. M., 1993, Offset-dependent reflectivity-Theory and practice of AVO analysis, Investigation in Geophysics Series v.8, Society of Exploration Geophysicists.
  2. Castagna, J. P., Swan, H. W., and Foster, D. J., 1998, Framework for AVO gradient and intercept interpretation, Geophysics, 63, 948-956. https://doi.org/10.1190/1.1444406
  3. Chung, B., and Lee, H., 2008, AVO analysis of 3-D seismic data acquired in Heuksan Basin for detecting free gas zone, Journal of the Korean Society of Mineral and Energy Resources Engineers, 45, 484-494.
  4. Ha, Y., and Shin, S., 2011, Seismic anisotropy characteristics in transversely isotropic media using physical modeling, Journal of the Korean Society of Mineral and Energy Resources Engineers, 48, 115-126.
  5. Hilterman, F. J., 2001, Seismic amplitude interpretation, Society of Exploration Geophysicists.
  6. Koefoed, O., 1955, On the effect of Poisson's ratios of rock strata on the reflection coefficients of plane waves, Geophysical Prospecting, 3, 381-387. https://doi.org/10.1111/j.1365-2478.1955.tb01383.x
  7. Rutherford, S. R., and Williams, R. H., 1989, Amplitude-versusoffset variations in gas sands, Geophysics, 54, 680-688. https://doi.org/10.1190/1.1442696
  8. Shuey, R. T., 1985, A simplification of the Zoeppritz equations, Geophysics, 50, 609-614. https://doi.org/10.1190/1.1441936
  9. Yang, S., Seo, T., Yoo, H., and Chang, J., 2000, A study of seismic AVO characteristics on hydrate formation, Journal of the Korean Society of Mineral and Energy Resources Engineers, 37, 213-223.
  10. Yi, B. Y., Lee, G. H., Horozal, S., Yoo. D. G., Ryu, B. J., Kang, N. K., Lee, S. R., and Kim, H. J., 2011, Qualitative assessment of gas hydrate and gas concentrations from the AVO characteristics of the BSR in the Ulleung Basin, East Sea (Japan Sea), Marine and Petroleum Geology, 28, 1953-1966. https://doi.org/10.1016/j.marpetgeo.2010.12.001
  11. Zoeppritz, K., 1919, Erdbebenwellen VIIIB, On the reflection and propagation of seismic waves, Gottinger Nachrichten, I, 66-84.

Cited by

  1. Seismic Data Processing and Inversion for Characterization of CO2 Storage Prospect in Ulleung Basin, East Sea vol.48, pp.1, 2015, https://doi.org/10.9719/EEG.2015.48.1.25