• Title/Summary/Keyword: Stable surface

Search Result 2,182, Processing Time 0.035 seconds

Performance of Upflow Anaerobic Bioelectrochemical Reactor Compared to the Sludge Blanket Reactor for Acidic Distillery Wastewater Treatment (상향류식 혐기성 슬러지 블랭킷 반응조에 비교한 생물전기화학 반응조의 산성 주정폐수처리성능)

  • Feng, Qing;Song, Young-Chae;Yoo, Kyuseon;Lal, Banwari;Kuppanan, Nanthakumar;Subudhi, Sanjukta
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.279-290
    • /
    • 2016
  • The performance of upflow anaerobic bioelectrochemical reactor (UABE), equipped with electrodes (anode and cathode) inside the upflow anaerobic reactor, was compared to that of upflow anaerobic sludge blanket (UASB) reactor for the treatment of acidic distillery wastewater. The UASB was stable in pH, alkalinity and VFAs until the organic loading rate (OLR) of 4.0 g COD/L.d, but it became unstable over 4.0 g COD/L.d. As a response to the abrupt doubling in OLR, the perturbation in the state variables for the UABE was smaller, compared to the UASB, and quickly recovered. The UABE stability was better than the UASB at higher OLR of 4.0-8.0 g COD/L.d, and the UABE showed better performance in specific methane production rate (2,076mL $CH_4/L.d$), methane content in biogas (66.8%), and COD removal efficiency (82.3%) at 8.0 g COD/L.d than the UASB. The maximum methane yield in UABE was about 407mL/g $COD_r$ at 4.0 g COD/L.d, which was considerably higher than about $282mL/g\;COD_r$ in UASB. The rate limiting step for the bioelectrochemical reaction in UABE was the oxidation of organic matter on the anode surface, and the electrode reactions were considerably affected by the pH at 8.0 g COD/L.d of high OLR. The maximum energy efficiency of UABE was 99.5%, at 4.0 g COD/L.d of OLR. The UABE can be an advanced high rate anaerobic process for the treatment of acidic distillery wastewater.

Organization and function of shoot apical meristem affecting growth and development in plants (식물의 생장과 발달에 영향을 미치는 슈트 정단분열조직의 체제와 기능)

  • Lee, Kyu Bae
    • Journal of Plant Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.180-193
    • /
    • 2014
  • In plants, a shoot apex has a small region known as the shoot apical meristem (SAM) having a group of dividing (initiating) cells. The SAM gives rise to all the groundabove structures of plants throughout their lifetime, and thus it plays important role in growth and development of plants. This review describes theories to explain the SAM organization and function developed over the last 250 years. Since in 1759 German botanist C. F. Wolff has described firstly the SAM, in 1858 Swiss botanist C. N${\ddot{a}}$geli proposed the apical cell theory from the observation of a large single apical cell in the SAM of seedless vascular plants: however, this view was recognized to be unsuitable to seed plants. In 1868, German botanist J. Hanstein suggested the histogen theory: this concept subdividing the SAM into dermatogen, periblem, and plerome was unable to generally apply to seed plants. In 1924, German botanist A. Schmidt proposed the tunica-corpus theory from the examination of angiosperm SAM in which two parts show different planes of cell division: this theory was proved to be not suitable to gymnosperm SAM, not have stable surface tunica layer. In 1938, American botanist A. Foster described zones in gymnosperm SAM based on the cytohistologic differentiation and thus called it a cytohistological zonation theory. With works by E. Gifford, in 1954, this zonation pattern was demonstrated to be also applicable to angiosperm SAM. As another theory, in 1952 French botanist R. Buvat proposed the m${\acute{e}}$rist${\grave{e}}$me d'attente (waiting meristem) theory: however, this concept was confuted because of its negation of function during vegetative growth phase to central initial cells. Rescent studies with Arabidopsis thaliana have found that formation and maintenance of the SAM are under the control of selected genes: SHOOTMERISTEMLESS (STM) gene forms the SAM, and WUSCHEL (WUS) and CLAVATA (CLV) genes function in maintaining the SAM; signaling between WUS and CLV genes act through a negative feedback loop.

Development of Cloud and Shadow Detection Algorithm for Periodic Composite of Sentinel-2A/B Satellite Images (Sentinel-2A/B 위성영상의 주기합성을 위한 구름 및 구름 그림자 탐지 기법 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.989-998
    • /
    • 2021
  • In the utilization of optical satellite imagery, which is greatly affected by clouds, periodic composite technique is a useful method to minimize the influence of clouds. Recently, a technique for selecting the optimal pixel that is least affected by the cloud and shadow during a certain period by directly inputting cloud and cloud shadow information during period compositing has been proposed. Accurate extraction of clouds and cloud shadowsis essential in order to derive optimal composite results. Also, in the case of an surface targets where spectral information is important, such as crops, the loss of spectral information should be minimized during cloud-free compositing. In thisstudy, clouds using two spectral indicators (Haze Optimized Tranformation and MeanVis) were used to derive a detection technique with low loss ofspectral information while maintaining high detection accuracy of clouds and cloud shadowsfor cabbage fieldsin the highlands of Gangwon-do. These detection results were compared and analyzed with cloud and cloud shadow information provided by Sentinel-2A/B. As a result of analyzing data from 2019 to 2021, cloud information from Sentinel-2A/B satellites showed detection accuracy with an F1 value of 0.91, but bright artifacts were falsely detected as clouds. On the other hand, the cloud detection result obtained by applying the threshold (=0.05) to the HOT showed relatively low detection accuracy (F1=0.72), but the loss ofspectral information was minimized due to the small number of false positives. In the case of cloud shadows, only minimal shadows were detected in the Sentinel-2A/B additional layer, but when a threshold (= 0.015) was applied to MeanVis, cloud shadowsthat could be distinguished from the topographically generated shadows could be detected. By inputting spectral indicators-based cloud and shadow information,stable monthly cloud-free composited vegetation index results were obtained, and in the future, high-accuracy cloud information of Sentinel-2A/B will be input to periodic cloud-free composite for comparison.

Comparison of Characteristics of Electrodeposited Lithium Electrodes Under Various Electroplating Conditions (다양한 전착조건에서 제작된 리튬 전극의 특성 연구)

  • Lim, Rana;Lee, Minhee;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.128-137
    • /
    • 2019
  • A lithium is the lightest metal on the earth. It has some attractive characteristics as a negative electrode material such as a low reduction potential (-3.04 V vs. SHE) and a high theoretical capacity ($3,860mAh\;g^{-1}$). Therefore, it has been studied as a next generation anode material for high energy lithium batteries. The thin lithium electrode is required to maximize the efficiency and energy density of the battery, but the physical roll-press method has a limitation in manufacturing thin lithium. In this study, thin lithium electrode was fabricated by electrodeposition under various conditions such as compositions of electrolytes and the current density. Deposited lithium showed strong relationship between process condition and its characteristics. The concentration of electrolyte affects to the shape of deposited lithium particle. As the concentration increases, the shape of particle changes from a sharp edged long one to a rounded lump. The former shape is favorable for suppressing dendrite formation and the elec-trode shows good stripping efficiency of 92.68% (3M LiFSI in DME, $0.4mA\;cm^{-2}$). The shape of deposited particle also affected by the applied current density. When the amount of current applied gets larger the shape changes to the sharp edged long one like the case of the low concentration electrolyte. The combination of salts and solvents, 1.5M LiFSI + 1.5M LiTFSI in DME : DOL [1 : 1 vol%] (Du-Co), was applied to the electrolyte for the lithium deposition. The lithium electrode obtained from this electrolyte composition shows the best stripping efficiency (97.26%) and the stable reversibility. This is presumed to be due to the stability of the surface film induced by the Li-F component and the DOL effect of providing film flexibility.

Conservation Scientific Diagnosis and Evaluation of Bird Track Sites from the Haman Formation at Yongsanri in Haman, Korea (함안 용산리 함안층 새발자국 화석산지의 보존과학적 진단 및 평가)

  • Lee, Gyu Hye;Park, Jun Hyoung;Lee, Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.3
    • /
    • pp.74-93
    • /
    • 2019
  • The Bird Track Site in the Haman Formation in Yongsanri (Natural Monument No. 222) was reported on the named Koreanaornis hamanensis and Jindongornipes kimi sauropod footprint Brontopodus and ichnospecies Ochlichnus formed by Nematoda. This site has outstanding academic value because it is where the second-highest number of bird tracks have been reported in the world. However, only 25% of the site remains after being designated a natural monument in 1969. This is due to artificial damage caused by worldwide fame and quarrying for flat stone used in Korean floor heating systems. The Haman Formation, including this fossil site, has lithofacies showing reddish-grey siltstone and black shale, alternately. The boundary of the two rocks is progressive, and sedimentary structures like ripple marks and sun cracks can clearly be found. This site was divided into seven formations according to sedimentary sequences and structures. The results of a nondestructive deterioration evaluation showed that chemical and biological damage rates were very low for all formations. Also, physical damage displayed low rates with 0.49% on exfoliation, 0.04% on blistering, 0.28% on break-out; however, the joint crack index was high, 6.20. Additionally, efflorescence was observed on outcrops at the backside and the northwestern side. Physical properties measured by an indirect ultrasonic analysis were found to be moderately weathered (MW). Above all, the southeastern side was much fresher, though some areas around the column of protection facility appeared more weathered. Furthermore, five kinds of discontinuity surface can be found at this site, with the bedding plane showing the higher share. There is the possibility of toppling failure occurring at this site but stable on plane and wedge failure by means of stereographic projection. We concluded that the overall level of deterioration and stability were relatively fine. However, continuous monitoring and conservation treatment and management should be performed as situations such as the physicochemical weathering of the fossil layer, and the efflorescence of the mortar adjoining the protection facility's column appear to be challenging to control.

Usability assessment of thermoplastic Bolus for skin VMAT radiotherapy (피부 병변에 대한 VMAT 치료 시 열가소성 bolus의 유용성 평가: case review)

  • Kim, Min Soo;Kim, Joo Ho;Shin, Hyun Kyung;Cho, Min Seok;Park, Ga Yeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.85-92
    • /
    • 2020
  • Purpose: To find out the advantages of thermoplastic bolus compared to conventional bolus, which is mainly used in clinical practice, We evaluated Two cases in terms of dose and location reproducibility to assess Usability of thermoplastic Bolus for skin VMAT radiotherapy. Materials and Methods: Two patient's treated with left breast skin lesion were simulated using thermoplastic Bolus and planned with 2arc VMAT. the prescription dose was irradiated to 95% or more of the target volume. We evaluated The reproducibility of the bolus position by measuring the length of the air gap in the CBCT (Cone Beam CT) image. to evaluate dose reproducibility, we compared The dose distribution in the plan and CBCT and measured in vivo for patient 2. Results: The difference between the air gap in patient 1's simulation CT and the mean air gap (M1) during 10 treatments in the CBCT image was -0.42±1.24mm. In patient 2, the difference between the average air gap between the skin and the bolus (M2) during 14 treatments was -1.08±1.3mm, and the air gap between the bolus (M3) was 0.49±1.16. The difference in the dose distribution between Plan CT and CBCT was -1.38% for PTV1 D95 and 0.39% for SKIN (max) in patient 1. In patient 2, PTV1 D95 showed a difference of 0.63% and SKIN (max) -0.53%. The in vivo measurement showed a difference of -1.47% from the planned dose. Conclusion: thermoplastic Bolus is simpler and takes less time to manufacture compared to those produced by 3D printer. Also compared to conventional bolus, it has high reproducibility in the set-up side and stable results in terms of dose delivery.

Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse (옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발)

  • Cho, Jeong-Hwa;Lee, In-Bok;Lee, Sang-Yeon;Kim, Jun-Gyu;Decano, Cristina;Choi, Young-Bae;Lee, Min-Hyung;Jeong, Hyo-Hyeog;Jeong, Deuk-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Domestic facility agriculture grows rapidly, such as modernization and large-scale. And the production scale increases significantly compared to the area, accounting for about 60% of the total agricultural production. Greenhouses require energy input to create an appropriate environment for stable mass production throughout the year, but the energy load per unit area is large because of low insulation properties. Through the rooftop greenhouse, one of the types of urban agriculture, energy that is not discarded or utilized in the building can be used in the rooftop greenhouse. And the cooling and heating load of the building can be reduced through optimal greenhouse operation. Dynamic energy analysis for various environmental conditions should be preceded for efficient operation of rooftop greenhouses, and about 40% of the solar energy introduced in the greenhouse is energy exchange for crops, so it should be considered essential. A major analysis is needed for each sensible heat and latent heat load by leaf surface temperature and evapotranspiration, dominant in energy flow. Therefore, an experiment was conducted in a rooftop greenhouse located at the Korea Institute of Machinery and Materials to analyze the energy exchange according to the growth stage of crops. A micro-meteorological and nutrient solution environment and growth survey were conducted around the crops. Finally, a regression model of leaf temperature and evapotranspiration according to the growth stage of leafy vegetables was developed, and using this, the dynamic energy model of the rooftop greenhouse considering heat transfer between crops and the surrounding air can be analyzed.

Optimization of Characteristic Change due to Differences in the Electrode Mixing Method (전극 혼합 방식의 차이로 인한 특성 변화 최적화)

  • Jeong-Tae Kim;Carlos Tafara Mpupuni;Beom-Hui Lee;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • The cathode, which is one of the four major components of a lithium secondary battery, is an important component responsible for the energy density of the battery. The mixing process of active material, conductive material, and polymer binder is very essential in the commonly used wet manufacturing process of the cathode. However, in the case of mixing conditions of the cathode, since there is no systematic method, in most cases, differences in performance occur depending on the manufacturer. Therefore, LiMn2O4 (LMO) cathodes were prepared using a commonly used THINKY mixer and homogenizer to optimize the mixing method in the cathode slurry preparation step, and their characteristics were compared. Each mixing condition was performed at 2000 RPM and 7 min, and to determine only the difference in the mixing method during the manufacture of the cathode other experiment conditions (mixing time, material input order, etc.) were kept constant. Among the manufactured THINKY mixer LMO (TLMO) and homogenizer LMO (HLMO), HLMO has more uniform particle dispersion than TLMO, and thus shows higher adhesive strength. Also, the result of the electrochemical evaluation reveals that HLMO cathode showed improved performance with a more stable life cycle compared to TLMO. The initial discharge capacity retention rate of HLMO at 69 cycles was 88%, which is about 4.4 times higher than that of TLMO, and in the case of rate capability, HLMO exhibited a better capacity retention even at high C-rates of 10, 15, and 20 C and the capacity recovery at 1 C was higher than that of TLMO. It's postulated that the use of a homogenizer improves the characteristics of the slurry containing the active material, the conductive material, and the polymer binder creating an electrically conductive network formed by uniformly dispersing the conductive material suppressing its strong electrostatic properties thus avoiding aggregation. As a result, surface contact between the active material and the conductive material increases, electrons move more smoothly, changes in lattice volume during charging and discharging are more reversible and contact resistance between the active material and the conductive material is suppressed.

Temporal variation in the community structure of green tide forming macroalgae(Chlorophyta; genus Ulva) on the coast of Jeju Island, Korea based on DNA barcoding (DNA 바코드를 이용한 제주도 연안 파래대발생(green tide)을 형성하는 갈파래(genus Ulva) 군집구조 및 주요 종 구성의 시간적 변이)

  • Hye Jin Park;Seo Yeon Byeon;Sang Rul Park;Hyuk Je Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.464-476
    • /
    • 2022
  • In recent years, macroalgal bloom occurs frequently in coastal oceans worldwide. It might be attributed to accelerating climate change. "Green tide" events caused by proliferation of green macroalgae (Ulva spp.) not only damage the local economy, but also harm coastal environments. These nuisance events have become common across several coastal regions of continents. In Korea, green tide incidences are readily seen throughout the year along the coastlines of Jeju Island, particularly the northeastern coast, since the 2000s. Ulva species are notorious to be difficult for morphology-based species identification due to their high degrees of phenotypic plasticity. In this study, to investigate temporal variation in Ulva community structure on Jeju Island between 2015 and 2020, chloroplast barcode tufA gene was sequenced and phylogenetically analyzed for 152 specimens from 24 sites. We found that Ulva ohnoi and Ulva pertusa known to be originated from subtropical regions were the most predominant all year round, suggesting that these two species contributed the most to local green tides in this region. While U. pertusa was relatively stable in frequency during 2015 to 2020, U. ohnoi increased 16% in frequency in 2020 (36.84%), which might be associated with rising sea surface temperature from which U. ohnoi could benefit. Two species (Ulva flexuosa, Ulva procera) of origins of Europe should be continuously monitored. The findings of this study provide valuable information and molecular genetic data of genus Ulva occurring in southern coasts of Korea, which will help mitigate negative influences of green tide events on Korea coast.

Interpretation of Microscale Behaviors and Precision Measurement Monitoring for the Five-story and Seven-story Stone Pagodas from Cheongnyangsaji Temple Site in Gongju, Korea (공주 청량사지 오층석탑 및 칠층석탑의 정밀 계측모니터링과 미세거동 해석)

  • LEE Jeongeun;PARK Seok Tae;LEE Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.132-158
    • /
    • 2023
  • The five-story and seven-story stone pagodas at Cheongnyangsaji temple site in Gongju are located under the Sambulbong peak of Gyeryongsan mountain, and are known to have been built of the middle in Goryeo dynasty. As the two pagodas in which two types of Baekje stone pagoda coexist in one era, their historical and academic value are recognized. The seven-story pagoda was overturned by robbery in 1944, and as a result, the five-story pagoda was tilted. Although the two pagodas were restored in 1961, structural instability was continuously raised. In this study, measurement data accumulated from May 2021 to March 2022, and seasonal characteristics were reviewed, and the micro behavior of pagodas were analyzed according to temperature and precipitation during the same period. As a result, the micro thermoelastic behavior was repeated according to the daily temperature change in all sensors, and both the slope and the displacement showed microscale behavior. In the inclinometer, moisture containing the surface and inside of the stones repeated expansion and contraction due to temperature change, showing the micro movements. In particular, the upper part of the five-story pagoda moved up to 3.89° to the northwest, and the seven-story pagoda tilted up to 0.078° to the northeast. The maximum displacements were recorded as 0.127 and 0.149 mm in the five-story and the seven-story pagoda, respectively. These values tended to return to the original position at the end of the measurement, but did not recover completely, indicating a state requiring precise monitoring. The result obtained through the study can be used as basic data for the stable conservation of the two stone pagodas. Based on the behavioral characteristics considering various environmental factors should be analyzed, and the preventive conservation through the maintenance of measurement system built this time should be continued.