DOI QR코드

DOI QR Code

Comparison of Characteristics of Electrodeposited Lithium Electrodes Under Various Electroplating Conditions

다양한 전착조건에서 제작된 리튬 전극의 특성 연구

  • Lim, Rana (Department of Chemical Engineering, Dong-A University) ;
  • Lee, Minhee (Department of Chemical Engineering, Dong-A University) ;
  • Kim, Jeom-Soo (Department of Chemical Engineering, Dong-A University)
  • Received : 2019.08.13
  • Accepted : 2019.08.19
  • Published : 2019.08.31

Abstract

A lithium is the lightest metal on the earth. It has some attractive characteristics as a negative electrode material such as a low reduction potential (-3.04 V vs. SHE) and a high theoretical capacity ($3,860mAh\;g^{-1}$). Therefore, it has been studied as a next generation anode material for high energy lithium batteries. The thin lithium electrode is required to maximize the efficiency and energy density of the battery, but the physical roll-press method has a limitation in manufacturing thin lithium. In this study, thin lithium electrode was fabricated by electrodeposition under various conditions such as compositions of electrolytes and the current density. Deposited lithium showed strong relationship between process condition and its characteristics. The concentration of electrolyte affects to the shape of deposited lithium particle. As the concentration increases, the shape of particle changes from a sharp edged long one to a rounded lump. The former shape is favorable for suppressing dendrite formation and the elec-trode shows good stripping efficiency of 92.68% (3M LiFSI in DME, $0.4mA\;cm^{-2}$). The shape of deposited particle also affected by the applied current density. When the amount of current applied gets larger the shape changes to the sharp edged long one like the case of the low concentration electrolyte. The combination of salts and solvents, 1.5M LiFSI + 1.5M LiTFSI in DME : DOL [1 : 1 vol%] (Du-Co), was applied to the electrolyte for the lithium deposition. The lithium electrode obtained from this electrolyte composition shows the best stripping efficiency (97.26%) and the stable reversibility. This is presumed to be due to the stability of the surface film induced by the Li-F component and the DOL effect of providing film flexibility.

리튬은 가장 가벼운 금속일 뿐만 아니라 낮은 환원전위(-3.04 V vs. SHE)와 큰 이론용량($3860mAh\;g^{-1}$)을 가지고 있어 차세대 음극 소재로 연구되고 있다. 리튬 금속을 전극으로 사용하는 리튬이차전지의 경우 전지의 효율과 에너지 밀도 극대화를 위해 얇은 두께의 리튬 전극이 필요하지만 기존의 리튬 박을 제조하는 물리적인 압연 방법으로는 일정수준 이하의 두께를 가지는 리튬 박을 제조하는데 한계가 있다. 본 연구에서는 물리적인 방법 대신 전해도금법으로 박막의 리튬을 전착하여 전해도금 시 사용되는 전해액의 종류와 전착 조건이 전착 특성 및 전착된 리튬의 전기화학 특성에 주는 영향을 확인하였다. 전착 전해액의 농도가 높을 수록 리튬 덴드라이트(dendrite) 형성 억제에 유리한 크고 둥근 형태의 리튬 입자를 형성하였으며 우수한 stripping 효율 (92.68%, 3M LiFSI in DME) 을 나타냈다. 전착 속도(전류 밀도)의 경우 속도 증가에 따라 리튬이 길이 방향으로 성장하여 길고 끝이 뾰족한 형태를 가지는 경향을 보였으며, 이로 인한 비표면적 증가로 전착된 리튬 전극의 stripping 효율이 감소(90.41%, 3M LiFSI in DME, $0.8mA\;cm^{-2}$)하는 경향을 확인하였다. 두 종류의 염과 용매를 조합하여 얻은 1.5M LiFSI + 1.5M LiTFSI in DME : DOL (1 : 1 vol%) (Du-Co) 전해액에서 전착된 리튬 전극이 가장 우수한 stripping 효율 (97.26%) 및 안정적인 가역성을 보였으며, 이는 염의 분해물로 구성된 전극 표면 피막의 Li-F 성분이 주는 안정성 향상과 피막의 유연성을 부여하는 DOL 효과에 기인한 것으로 추정된다.

Keywords

References

  1. G. Jeong, Y.-U. Kim, H. Kim, Y.-J. Kim, H.-J. Sohn, 'Prospective materials and applications for Li secondary batteries' Energy Environ. Sci., 4, 1986 (2011). https://doi.org/10.1039/c0ee00831a
  2. R. Wagner, N. Preschitschek, S. Passerini, J. Leker, M. Winter, 'Current research trends and prospects among the various materials and designs used in lithium-based batteries' J. Appl. Electrochem., 43, 481 (2013). https://doi.org/10.1007/s10800-013-0533-6
  3. M. S. WHITTINGHAM, 'Electrical Energy Storage and Intercalation Chemistry' Science, 192(4244), 1126 (1976). https://doi.org/10.1126/science.192.4244.1126
  4. R. YAZAMI, PH. TOUZAIN, 'A REVERSIBLE GRAPHITE-LITHIUM NEGATIVE ELECTRODE FOR ELECTROCHEMICAL GENERATORS' J. Power Sources, 9, 365 (1983). https://doi.org/10.1016/0378-7753(83)87040-2
  5. M. Winter, B. Barnett, K Xu, 'Before Li Ion Batteries' Chem. Rev., 118, 11433 (2018). https://doi.org/10.1021/acs.chemrev.8b00422
  6. S.-S. Kim, 'Recent Developments in Anode Materials for Li Secondary Batteries' J. Kor. Electrochem. Soc., 11, 211 (2008). https://doi.org/10.5229/JKES.2008.11.3.211
  7. A. Zhamu, G. Chen, C. Liu, D. Neff, Q. Fang, Z. Yu, W. Xiong, Y. Wang, X. Wang, Bor Z. Jang, 'Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells' Energy Environ. Sci., 5, 5701 (2012). https://doi.org/10.1039/C2EE02911A
  8. T. Placke, R. Kloepsch, S. Dühnen, M. Winter, 'Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density' J Solid State Electrochem., 21, 1939 (2017). https://doi.org/10.1007/s10008-017-3610-7
  9. H.L. Yu, J.N. Zhao, L.B. Ben, Y. Zhan, Y.D. Wu, X. Huang, 'Dendrite-Free Lithium Deposition with Self-Aligned Columnar Structure in a Carbonate-Ether Mixed Electrolyte' ACS Energy Lett., 2, 1296 (2017). https://doi.org/10.1021/acsenergylett.7b00273
  10. R. Miao, J. Yang, Z. Xu, J. Wang, Y. Nuli, L. Sun, 'A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries' Scientific Reports, 6, 21771 (2016). https://doi.org/10.1038/srep21771
  11. W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y.-M. Chiang, Y. Cui, 'The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth' Nat. Commun., 6, 7436 (2015). https://doi.org/10.1038/ncomms8436
  12. Y. Xie, H. Xiang, P. Shi, J. Guo, H. Wang, 'Enhanced separator wettability by LiTFSI and its application for lithium metal batteries' Journal of Membrane Science, 524, 315 (2017). https://doi.org/10.1016/j.memsci.2016.11.021
  13. Y. Yamada, M. Yaegashi, T. Abe, A. Yamada, 'A superconcentrated ether electrolyte for fast-charging Li-ion batteries' Chem. Commun., 49, 11194 (2013). https://doi.org/10.1039/c3cc46665e
  14. P. Verma, P. Maire, P. Novak, 'A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries' Electrochim. Acta., 55, 6332 (2010). https://doi.org/10.1016/j.electacta.2010.05.072
  15. M. Wang, L. Huai, G. Hu, S. Yang, F. Ren, S. Wang, Z. Zhang, Z. Chen, Z. Peng, C. Shen, D. Wang, 'Effect of LiFSI Concentrations To Form Thickness- and Modulus-Controlled SEI Layers on Lithium Metal Anodes' J. Phys. Chem. C, 122, 9825 (2018). https://doi.org/10.1021/acs.jpcc.8b02314
  16. S. J. Lee, E. H. Lee, S. A. Lim, 'Characterization of SEI layer for Surface Modified Cathode of Lithium Secondary Battery Depending on Electrolyte Additives' J. Kor. Electrochem. Soc., 19, 69 (2016). https://doi.org/10.5229/JKES.2016.19.3.69
  17. A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, 'Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal' Nano Lett., 17, 1132 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
  18. S. Choudhury, L. A. Archer, 'Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities' Adv. Electron. Mater., 2, 1500246 (2016). https://doi.org/10.1002/aelm.201500246
  19. D. Aurbach, 'Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries' J. Power Sources, 89, 206 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6
  20. R. Miao, J. Yang, X. Feng, H. Jia, J. Wang, Y. Nuli, 'Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility' J. Power Sources, 271, 291 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.011
  21. C. Fiedler, B. Luerssen, M. Rohnke, J. Sann, J. Janek, 'XPS and SIMS Analysis of Solid Electrolyte Interphases on Lithium Formed by Ether-Based Electrolytes' J. Electrochem. Soc., 164(14), A3742 (2017). https://doi.org/10.1149/2.0851714jes
  22. D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, J. Affinito, 'On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries' J. Electrochem. Soc., 156(8), A694 (2009). https://doi.org/10.1149/1.3148721