• Title/Summary/Keyword: Stable process

Search Result 2,735, Processing Time 0.035 seconds

An Implementation of Stable Optical Security System using Interferometer and Cascaded Phase Keys (간섭계와 직렬 위상 키를 이용한 안정한 광 보안 시스템의 구현)

  • Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 2007
  • In this paper, we proposed an stable optical security system using interferometer and cascaded phase keys. For the encryption process, a BPCGH(binary phase computer generated hologram) that reconstructs the origial image is designed, using an iterative algorithm and the resulting hologram is regarded as the image to be encrypted. The BPCGH is encrypted through the exclusive-OR operation with the random generated phase key image. For the decryption process, we cascade the encrypted image and phase key image and interfere with reference wave. Then decrypted hologram image is transformed into phase information. Finally, the origianl image is recovered by an inverse Fourier transformation of the phase information. During this process, interference intensity is very sensitive to external vibrations. a stable interference pattern is obtained using self-pumped phase-conjugate minor made of the photorefractive material. In the proposed security system, without a random generated key image, the original image can not be recovered. And we recover another hologram pattern according to the key images, so can be used an authorized system.

  • PDF

Stable C and N Isotopes: A Tool to Interpret Interacting Environmental Stresses on Soil and Plant

  • Yun, Seok-In;Ro, Hee-Myong
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.262-271
    • /
    • 2008
  • Natural abundances of stable isotopes of nitrogen and carbon (${\delta}^{15}N$ and ${\delta}^{13}C$) are being widely used to study N and C cycle processes in plant and soil systems. Variations in ${\delta}^{15}N$ of the soil and the plant reflect the potentially variable isotope signature of the external N sources and the isotope fractionation during the N cycle process. $N_2$ fixation and N fertilizer supply the nitrogen, whose ${\delta}^{15}N$ is close to 0%o, whereas the compost as. an organic input generally provides the nitrogen enriched in $^{15}N$ compared to the atmospheric $N_2$. The isotope fractionation during the N cycle process decreases the ${\delta}^{15}N$ of the substrate and increases the ${\delta}^{15}N$ of the product. N transformations such as N mineralization, nitrification, denitrification, assimilation, and the $NH_3$ volatilization have a specific isotope fractionation factor (${\alpha}$) for each N process. Variation in the ${\delta}^{13}C$ of plants reflects the photosynthetic type of plant, which affects the isotope fractionation during photosynthesis. The ${\delta}^{13}C$ of C3 plant is significantly lower than, whereas the ${\delta}^{13}C$ of C4 plant is similar to that of the atmospheric $CO_2$. Variation in the isotope fractionation of carbon and nitrogen can be observed under different environmental conditions. The effect of environmental factors on the stomatal conductance and the carboxylation rate affects the carbon isotope fractionation during photosynthesis. Changes in the environmental factors such as temperature and salt concentration affect the nitrogen isotope fractionation during the N cycle processes; however, the mechanism of variation in the nitrogen isotope fractionation has not been studied as much as that in the carbon isotope fractionation. Isotope fractionation factors of carbon and nitrogen could be the integrated factors for interpreting the effects of the environmental factors on plants and soils.

Leaf Senescence in a Stay-Green Mutant of Arabidopsis thaliana: Disassembly Process of Photosystem I and II during Dark-Incubation

  • Oh, Min-Hyuk;Kim, Yung-Jin;Lee, Choon-Hwan
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.256-262
    • /
    • 2000
  • In this study the disassembly process of chlorophyII (ChI)protein complexes of a stay-green mutant (ore10 of Arabidopsis thaliana) was investigated during the dark incubation of detached leaves. During this dark-induced senescence (DIS), the Chi loss was delayed in the mutant, while the photochemical efficiency of photosystem II (PSII) or Fv/Fm was accelerated when compared with the wild type (WT) leaves. This indicates that the decrease in Fv/Fm is a separate process and not causally-linked to the degradation of Chi during DIS of Arabidopsis leaves. In the native green gel electrophoresis of the Chi-protein complexes, which was combined with an additional twodimensional SDS-PAGE analysis, the delayed senescence of this mutant was characterized by the appearance of an aggregate at 1 d or 2 d, as well as very stable light harvesting complex II (LHCII) trimers until 5 d after the start of DIS. The polypeptide composition of the aggregates varied during the whole DIS at 5 d. Dl protein appeared to be missing in the aggregates. This result supports the idea of a faster depletion of functional PSH in the mutants compared with WT, as suggested by the earlier reduction of Fv/Fm and the stable Chl a/b ratio in the mutants. At 5 d, the WT leaves also often showed aggregates, but the polypeptide composition was different from those of ore10. The results presented suggest that the formation of aggregates, or stable LHCII trimers in the stay-green mutants, is a way to structurally protect Chi-protein complexes from serious proteolytic degradation. Detailed disassembly processes of Chi-protein complexes in WT and ore10 mutants are discussed.

  • PDF

Stable Desalination of Hardness Substances through Charge Control in a Capacitive Deionization System (축전식 탈염 시스템에서 전하량 제어를 통한 경도물질의 안정적인 탈염)

  • Kim, Yoon-Tae;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.472-478
    • /
    • 2019
  • A stable desalination method of the hardness substance such as $Ca^{2+}$ by controlling the total charge (TC) supplied to the membrane capacitive deionization (MCDI) cell was studied. The adsorption (1.5 V) and desorption (0.0 V) were repeated 30 times while varying the TC in the adsorption process. The concentration and pH of effluent, adsorption and desorption amounts, current densities and cell potentials were analyzed in the desalination process. The maximum allowable charge (MAC) of the carbon electrode used in MCDI cell was measured to be 46 C/g. As a result of operation at TC (40 C/g) below the MAC value, electrode reactions did not occur, resulted in the stable desalination characteristics for a long-term operation. When operating at TCs (50, 60 C/g) above the MAC value, however, the concentration and pH of effluent varied greatly. Also, the scale was formed on the electrode surface due to electrode reactions, and the electric resistance of the cell gradually increased. It was thus concluded that it is possible to remove stably the hardness substance without any electrode reactions by controlling the charge supplied to MCDI cell during the adsorption process.

Synthesis of Poly(epoxy-imide)-Nano Silica Hybrid Film via CS Sol-gel Process and Their Dielectric Properties (CS졸을 이용한 Poly(epoxy-imide)-나노 Silica 하이브리드 필름의 합성과 유전특성)

  • Han, Se-Won;Han, Dong-Hee;Kang, Dong-Pil;Kang, Young-Taec
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.35-40
    • /
    • 2007
  • The new PEI(poly(epoxy-imide))-nano Silica film has been synthesized via in situ CS sol process, and the chemical bonding and microstructure of nano silica dispersed in resin were examined by FT-IR, TAG and SEM. The dielectric properties of these hybrid films over a given temperature and frequency ranges have been studied in a point of view of stable chemical bonding of nano Silica filler. The results from IR spectra and SEM photograph indicated that PEI-Silica hybrid film prepared with nano CS sol process has been synthesized in uniform and chemical bonding. The decrease property of dielectric constant with CS content, tangent loss consistent of given frequency and temperature has been explained in terms of the chain movement of polymer through chemical bonging and size effect of nano silica. The new PEI-CS sol hybrid film with such stable chemical and dielectric properties was expected to be used as a high functional coating application in ET, IT and electric power products.

Dye Decomposition in Seawater using Electro-Fenton Reaction (전기-펜톤 반응을 이용한 해수 중의 염료 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.383-393
    • /
    • 2020
  • To increase electrolysis performance, the applicability of seawater to the iron-fed electro-Fenton process was considered. Three kinds of graphite electrodes (activated carbon fiber-ACF, carbon felt, graphite) and dimensionally stable anode (DSA) electrode were used to select a cathode having excellent hydrogen peroxide generation and organic decomposition ability. The concentration of hydrogen peroxide produced by ACF was 11.2 mg/L and those of DSA, graphite, and carbon felt cathodes were 12.9 ~ 13.9 mg/L. In consideration of durability, the DSA electrode was selected as the cathode. The optimum current density was found to be 0.11 A/㎠, the optimal Fe2+ dose was 10 mg/L, and the optimal ratio of Fe2+ dose and hydrogen peroxide was determined to be 1:1. The optimum air supply for hydrogen peroxide production and Rhodamine B (RhB) degradation was determined to be 1 L/min. The electro-Fenton process of adding iron salt to the electrolysis reaction may be shown to be more advantageous for RhB degradation than when using iron electrode to produce hydrogen peroxide and iron ion, or electro-Fenton reaction with DSA electrode after generating iron ions using an iron electrode.

Chip Shape Control using AE Signal in Pure Copper Turning (순동선삭가공에서 AE 신호를 이용한 칩 형상 제어)

  • Oh, Jeong Kyu;Kim, Pyeong Ho;Koo, Joon Young;Kim, Duck Whan;Kim, Jeong Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.330-336
    • /
    • 2014
  • The continuous chip generated in cutting process deteriorates workpiece, tool, and machine tool system. It is necessary to treat this continuous chip in ductile material machining condition for stable cutting. This paper deals with the chip control method using acoustic emission(AE) signal in pure copper turning operation. AE raw signals, root mean square(RMS) signals and wavelet transformed signals measured in turning process are introduced to analysis for chip patterns. With analysis of AE signals, it is obtained that the produced chip patterns are correlated with the specified AE signals which are transformed by fuzzy pattern algorithm. By this experimental investigation, the chip patterns can be classified at significant level in pure copper machining process and controlled from continuous chips to reduced-length stable chips.

The stable e-beam deposition of metal layer and patterning on the PDMS substrate (PDMS 기판상에 금속층의 안정적 증착 및 패터닝)

  • Baek, Ju-Yeoul;Kwon, Gu-Han;Lee, Sang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.423-429
    • /
    • 2005
  • In this paper, we proposed the fabrication process of the stable e-beam evaporation and the patterning of metals layer on the polydimethylsiloxane (PDMS) substrate. The metal layer was deposited under the various deposition rate, and its effect to the electrical and mechanical properties (e.g.: adhesion-strength of metal layer) was investigated. The influence of surface roughness to the adhesion-strength was also examined via the tape test. Here, we varied the roughness by changing the reactive ion etching (RIE) duration. The electrode patterning was performed through the conventional photolithography and chemical etching process after e-beam deposition of $200{\AA}$ Ti and $1000{\AA}$ Au. As a result, the adhesion strength of metal layer on the PDMS surface was greatly improved by the oxygen plasma treatment. The e-beam evaporation on the PDMS surface is known to create the wavy topography. Here, we found that such wavy patterns do not effect to the electrical and mechanical properties. In conclusion, the metal patterns with minimum $20{\mu}m$ line width was produced well via the our fabrication process, and its electrical conductance was almost similar to the that of metal patterns on the silicon or glass substrates.

Turbidity Treatment of TiO2 Wastewater by Electrocoagulation/flotation Process (전기응집/부상 공정을 이용한 TiO2 폐수의 탁도 제거)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.89-96
    • /
    • 2010
  • The separation of $TiO_2$ wastewater carried out by an electrocoagulation/flotation process, which had various operating parameters. The effect of electrode material (aluminum and four dimensionally stable electrode), applied current (0.07~0.5 A), electrolyte concentration (0~1 g/L), solution pH (3~11), initial turbidity (1000~20000 NTU) and suspended solid concentration (5000~25000 mg/L) were evaluated. Turbidity removal efficiency of the soluble anode (aluminum), which could produce metal ions, was higher than that of the dimensionally stable electrode. Considering operation time, turbidity removal and electric power, optimum current was 0.19 A. The more NaCl dosage was high, the less electric power was required. However, optimum NaCl concentration was 0.125 g/L considered removal efficiency, operation time and cost. Initial $TiO_2$ concentration did not affected turbidity removal on the electrocoagulation/flotation operation. The electrocoagulation/flotation process was proved to be a very effective separation method in the removal of $TiO_2$ from wastewater.

Stability and Improvement of Polishing Pad in W CMP (W CMP 공정에서의 연마패드표면 안정화 상태와 그 개선)

  • Park, Jae-Hong;Kinoshita, Masaharu;Yoshida, Koichi;Matsumura, Shinichi;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1027-1033
    • /
    • 2007
  • In this research, the polishing pad for W CMP has been analyzed to understand stabilization of polishing performance. For stabilization of process, the polishing pad condition is one of important factors. The polishing pad plays a key role in polishing process, because it contact with reacted surface of wafer[1]. The physical property of pad surface is ruled by conditioning tool which makes roughness and profile of pad surface. Pad surface affects on polishing performance such as RR(Removal Rate) and uniformity in CMP. The stabilized pad surface has stable roughness. And its surface has high level of wettability which can increase the probability of abrasive adhesion on pad. The result of this research is that the reduction of break-in and dummy polishing process were achieved by artificial machining to make stable pad surface. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied. Because, this type of pad is the most conventional type.