• Title/Summary/Keyword: Stabilizing piles

Search Result 32, Processing Time 0.025 seconds

A Study on the Slide Suppressor Wall Method Reinforced with Nailing System (Nailing System으로 보강된 억지벽체공법에 관한 연구)

  • 김홍택;강인규
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.79-100
    • /
    • 1995
  • This paper proposes a stabilizing method against landslide using slide suppressor wall reinforced with soil nails. Included are a procedure to predict earth pressures acting on the concrete panel and a method of analysis of stabilizing pile. Based on the proposed procedure, the efficient installation type and inclusion angle of nails are analyzed. Also, optimum location of the slide suppressor wall composed of concrete panel and stabilizing pile is analyzed. Finally the comparison with a method proposed by Wright is made, and the effect of interactions between stabilizing piles is examined, throughout the design example.

  • PDF

The Behavior of a Cut Slope Stabilized by Use of Piles (억지말뚝으로 보강된 절개사면의 거동)

  • Hong, Won-Pyo;Han, Jung-Geun;Lee, Mun-Gu
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.111-124
    • /
    • 1995
  • On development of mountaneous or hilly area, stability of cut slope should be provided to prevent undesirable landslides. When piles are used as a countermeasure to stabilize existing landslide, stabilities for both piles and slope should be simultaneously satisfied to obtain the whole stability of the slope reinforced by piles. In order to confirm the effect of stabilizing piles on slope stabilization, it is necessary to investigate the behavior of the slope, in which the piles are installed. In this paper, first, the countermeasures used commonly to control unstable slope in Korea were summerized systematically. Nezt, the behavior of piles and slope soil was investigated by instrumentation installed into a cut slope for an apartment stabilized by a row of piles. Instrumentation could present sufficient effect of piles on slope stabilization Construction works in front of the row of piles affected the displacement of piles and slope. The construction works were divided into four stages, i.e. initial cutting stage of slope, excavation stages for retaining wall and parking space, and construction of retaining wall. As the result of research, the applicability of the proposed design method could be confirmed sufficiently.

  • PDF

Comprehensive evaluating the stability of slope reinforced with free and fixed head piles

  • Xixi Xiong;Ying Fan;Jinzhe Wang;Pooya Heydari
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.523-540
    • /
    • 2023
  • The failure of slope can cause remarkable damage to either human life or infrastructures. Stabilizing piles are widely utilized to reinforce slope as a slip-resistance structure. The workability of pile-stabilized slopes is affected by various parameters. In this study, the performance of earth slope reinforced with piles and the behavior of piles under static load, by shear reduction strength method using the finite difference software (FLAC3D) has been investigated. Parametric studies were conducted to investigate the role of pile length (L), different pile distances from each other (S/D), pile head conditions (free and fixed head condition), the effect of sand density (loose, medium, and high-density soil) on the pile behavior, and the performance of pile-stabilized slopes. The performance of the stabilized slopes was analyzed by evaluating the factor of safety, lateral displacement and bending moment of piles, and critical slip mechanism. The results depict that as L increased and S/D reduced, the performance of slopes stabilized with pile gets better by raising the soil density. The greater the amount of bending moment at the shallow depths of the pile in the fixed pile head indicates the effect of the inertial force due to the structure on the pile performance.

Numerical Analysis about Pile Reinforcement Effect for Restraint of Lateral Displacement Occurring in the Embankment on Soft Ground (연약지반에 성토시 발생하는 수평변위 억지를 위한 말뚝보강 효과에 대한 수치해석)

  • Kim, Jae-Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • When an embankment is performed on the soft ground of the coastal with possibilities of lateral flow, lateral displacement occurs to the bottom of the surface of the ground. This lateral displacement can affect existing infra structures that are buried in the adjacent underground by causing a displacement in the nearby base foundation. Soft ground supporting piles and reinforced piles were applied as reinforcement remedies against the lateral displacement. And for the effect analysis, numerical analysis was performed under the classifications of non-reinforcement base and reinforced base. The result of the numerical analysis showed that the reinforced piles had more effects by 1.9 times than non-reinforced piles. Soft ground supporting piles showed better effects by 2.6 times than non-reinforced piles. Additionally, between the two reinforced remedies, soft ground supporting piles showed greater effects by 1.3-1.6 times than the reinforced piles.

Stability Analysis of Pile/Slope Systems Considering Pile-slope Interaction (억지말뚝-사면의 상호작용을 고려한 사면안전율 분석)

  • 김병철;유광호;정상섬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.513-520
    • /
    • 2003
  • A numerical comparison or predictions by limit equilibrium analysis and 3n analysis is presented for slope/pile system. Special attention is given to the coupled analysis based on the explicit-finite-difference code, FLAC. To this end, an internal routine (FISH) was developed to calculate a factor of safety for a pile-reinforced slope according to shear strength reduction technique. The case of coupled analyses was performed for stabilizing piles in slope in which the pile response and slope stability are considered simultaneously and subsequently the factors of safety are compared to uncoupled analysis (limit equilibrium analysis) solution for a homogeneous slope. Based on a limited parametric study, it is shown that in the free-head condition the factor of safety in slope is more conservative for a coupled analysis than for an uncoupled analysis and a definitely larger value represents when piles are installed in the middle of the slopes and are restrained in the pile head.

  • PDF

Fundamental Study for the Development of a New Pile under Lateral Load (횡하중에 강한 새로운 말뚝의 개발을 위한 기초 연구)

  • Yun, Yeo-Won;Jo, Ju-Hwan;Kim, Du-Gyun
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.45-60
    • /
    • 1997
  • In this research the behavior of a new type of a single pile under lateral loading and against slope sliding is studied. Especially, the section of a new pile is determined throughout experiments, and the single pile behavior under lateral loading and the effect of improvement in slope stability by using new type of pile (gear-shaped) were studied. As a result, it is known that maximum deflection of gear-shaped pile is far smaller than that of traditional PC circular pile for the same lateral loading. And lateral load of gear-shaped pile at allowable deflection was bigger than that of PC circular pile. From the comparison between two hypes of piles, it can be seen that the degree of improvement of safety factor in slope was higher in gear-shaped pile than that of PC pile under the same condition, and it results in the reduction of the number of stabilizing piles in a slope.

  • PDF

Numerical study on the optimal position of a pile for stabilization purpose of a slope

  • Boulfoul, Khalifa;Hammoud, Farid;Abbeche, Khelifa
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.401-411
    • /
    • 2020
  • The paper describes the influence of pile reinforcement on the stability of the slope behaviour, and the exploitation of the results of in situ measurements will be conducted. In the second part, a 2D numerical modelling will be conducted by using the finite element code PLAXIS2D; in order to validate the proposed modelling approach by comparing the numerical results with the measurements results carried out on the slides studied; to study the effect of positioning of piles as a function of the shear parameters of the supported soil on the behaviour of the soil. For various shear strength of the soil a row of pile position is found, at which the piles offer the maximum contribution to slope stability. The position of piles is found to influence the safety factor in granular soil whereas it shows a slight influence on the safety factor in coherent soil. The results also indicate that the ideal position for such stabilizing piles is in the middle height of the slope. Comparison of results of present study with literature from publication: indicated that to reach the maximum stability of slope, the pile must be installed with Lx/L ratio (0.37 to 0.62) and the inclination must be between 30° to 60°. Even, after a certain length of the pile, the increasing will be useless. The application of the present approach to such a problem is located at the section of PK 210+480 to 210+800 of the Algerian East-West Highway.

A Study on a Self-supported Earth Retaining Wall with Stabilizing Piles (억지말뚝을 이용한 자립식 흙막이 공법의 개발)

  • Sim, Jae-Uk;Back, Sung-Kwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1461-1467
    • /
    • 2005
  • In this study, a new earth retention system has been developed and introduced. This system is a self-supported earth retaining wall without struts. The new earth retention system consists of connected double H-pile and wale. This system provides a larger spacing of support, economical benefit, construction easiness, good performance and safety. This paper explains basic principles and mechanism of self-supported earth retaining wall. In order to investigate applicability and safety of this system, numerical analysis was performed. The finite differential method program, FLAC3D is used. The predicted performances of this system were presented and discussed.

  • PDF

Coupled Effect of Pile/Slope Systems (억지말뚝-사면의 상호작용 효과)

  • 정상섬;유광호;이선근
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.163-173
    • /
    • 2003
  • In this paper, a numerical comparison of predictions by limit equilibrium analysis and 3D analysis is presented for slope/pile system. Special attention is given to the coupled analysis based on the explicit finite difference code, FLAC 3D. To this end, an internal routine (FISH) was developed to calculate a factor of safety for a file reinforced slope according to shear strength reduction technique. The case of coupled analyses was performed for stabilizing piles in slope in which the pile response and slope stability are considered simultaneously. In this study, by using these methods, the failure surfaces and factors of safety were compared and analyzed in several cases, such as toe, middle and top of the slope, respectively. Furthermore, the coupled method based on shear strength reduction technique was verified by the comparison with other analysis results.

Mechanical Effects of Back Supporting Beam of Assembled Earth Retaining Wall on Field Model Tests Results (현장모형실험을 통한 AER옹벽의 지주보의 역학적 효과)

  • Kim, Hongsun;Im, Jong-Chul;Choi, Junghyun;Seo, Minsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.343-355
    • /
    • 2017
  • In this study, an Assembled Earth Retaining Wall (AER wall) is newly proposed. The AER wall combined stabilizing piles names as Back Supporting Beam is developed to improve stability and economics of existing retaining walls. For the verification of the AER wall, the field model tests and 3D numerical analyses were performed. As a result of the field tests, it can be confirmed that the earth pressure is considerably reduced compared with the L-shaped retaining wall. Also, the 3D numerical analyses show that AER wall is at least 29.85% more effective at lateral displacement than general L-shaped retaining wall. In other words, AER wall is expected to raise economical efficiency because of excellent mechanical stability of Back Supporting Beam.