• Title/Summary/Keyword: Stability Limit

Search Result 1,064, Processing Time 0.034 seconds

A Study on the Design and Validation of Automatic Pitch Rocker for the Aircraft Deep Stall Recovery (항공기의 실속 회복을 위한 자동 회복 장치 설계 및 검증에 관한 연구)

  • Hahn, Seong-Ho;Hwang, Byung-Moon;Lee, Young-Ho;Lee, Dong-Kyu;Ahn, Sung-Jun;Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.6-14
    • /
    • 2007
  • Modem version of supersonic jet fighter aircraft must have been guaranteed appropriate controllability and stability in HAoA(High Angle of Attack). Limit value of aircraft entering into the departure in HAoA is related to aircraft configuration design. But, the control law such as AoA and yaw-rate limiter is implemented in digital Fly-By-Wire flight control system of supersonic jet fighter to guarantee the aircraft's safety in HAoA. The HAoA flight control law have two parts, one is control law of departure prevention and the other is control law of departure recovery support. The control laws of departure prevention for advanced jet trainer consist AoA limiter, roll command limiter and rudder fader. The control laws of departure recovery support are consist yaw-rate limiter and MPO(Manual Pitch Override) mode. The guideline of pitch rocking using MPO mode is simple, but operating skill of pitch rocking is very difficult by the pilot with inexperience of departure situation. This paper addresses the design and validation of APR(Automatic Pitch Rocker) control law instead of MPO in order to automatic recovery without manual pitch rocking by the pilot. And, recovery characteristic with APR verifies by the nonlinear analysis and pilot evaluation.

Free-standing Three Dimensional Graphene Incorporated with Gold Nanoparticles as Novel Binder-free Electrochemical Sensor for Enhanced Glucose Detection

  • Bui, Quoc Bao;Nguyen, Dang Mao;Nguyen, Thi Mai Loan;Lee, Ku Kwac;Kim, Hong Gun;Ko, Sang Cheol;Jeong, Hun
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.229-237
    • /
    • 2018
  • The electrochemical sensing performance of metal-graphene hybrid based sensor may be significantly decreased due to the dissolution and aggregation of metal catalyst during operation. For the first time, we developed a novel large-area high quality three dimensional graphene foam-incorporated gold nanoparticles (3D-GF@Au) via chemical vapor deposition method and employed as free-standing electrocatalysis for non-enzymatic electrochemical glucose detection. 3D-GF@Au based sensor is capable to detect glucose with a wide linear detection range of $2.5{\mu}M$ to 11.6 mM, remarkable low detection limit of $1{\mu}M$, high selectivity, and good stability. This was resulted from enhanced electrochemical active sites and charge transfer possibility due to the stable and uniform distribution of Au NPs along with the enhanced interactions between Au and GF. The obtained results indicated that 3D-GF@Au hybrid can be expected as a high quality candidate for non-enzymatic glucose sensor application.

An Analysis of Reliability by Factors for Development of Job Stress Measurement Tools of Radiological Technologists (방사선사의 직무 스트레스 측정도구 개발을 위한 요인별 신뢰도 분석)

  • Jung, Hong-Ryang;Son, Bu-Soon;Lim, Cheong-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.103-110
    • /
    • 2006
  • The present study is designed to analyze reliability and validity of the instruments used to measure job stress of radiological technologists mainly by means of the questionnaires from 'Korean edition of NIOSH check list'. The subjects of this study are 890 radiological technologists active at 44 general hospitals in 16 provinces and cities across the country. The item-total reliability revealed that 10 factors in 6 are the major causes of stress in job life of radiological technologists. The measuring instrument proved to be valid with reliability coefficient of internal consistency by factors being more than 0.7. The factors found to be applicable herewith include limit and authority of job (0.73), cohesion within departments (0.86), resources control (0.81), mental requirements (0.85), job load (0.82), and job stability (0.72). When job autonomy item of causes are modified for proper use to radiological technologists, the measuring instruments are expected to show high reliability. It seems, however, necessary to develop a measuring instrument to analyze and use the validity of related measuring instruments since the reliability here was rated low, with statistical coefficients lower than 0.7 in such factors as job management (0.57), conflicts within departments (-1.13), sense of responsibility for patients (0.66) and usage of education (0.26). As this study was intended to examine reliability and validity of the concepts related to measurement of job stress on the part of radiological technologists, it nay not be proper to apply the results of this study to general use, but is advised to utilize them as basis for developing instruments to verify reliability and validity by comparing with and analyzing other measuring instruments.

Coupled Effect of Soil Nail/Slope Systems (쏘일네일-사면의 상호작용 효과)

  • Jeong Sang Seom;Lee Jin Hyung;Lee Sun Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.127-135
    • /
    • 2005
  • In this paper, a numerical comparison of predictions by limit equilibrium analysis and finite difference analysis is presented for slope/soil-nail system. Special attention is given to the coupled analysis based on the explicit-finite-difference code, FLAC 2D. To this end, an internal routine (FISH) was developed to calculate a factor of safety for a soil nail slope according to shear strength reduction method. The case of coupled analyses was performed for soil nails in slope in which the soil nails response and slope stability are considered simultaneously. In this study, by using these methods, the failure surfaces and factors of safety were compared and analyzed in several cases, such as toe, middle and top of the slope, respectively. Furthermore, the coupled method based on shear strength reduction method was verified by the comparison with other analysis results.

An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine (CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, SUNMOON;KIM, JEONGSOO;LEE, SEANGWOCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

An Analytic Study On the Mutual Relation between Method(1) and (2) of ZIEGLER-NICHOLS Control Parameter Tuning (지글러-니콜스 제어파라미터 조정법(1),(2)의 상호 연관성에 대한 해석적 연구)

  • 강인철;최순만;최재성
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.112-119
    • /
    • 2001
  • Parameter tuning methods by Ziegler-Nickels for control systems are generally classified into Z-N(1) and Z-N(2). The purpose of this paper is to describe what relations exist between methods of Z-N(1) and Z-N(2), or how Z-N(1) method can be originated from Z-N(2) method by analyzing one loop control system of P or PI controller and time delay process. The formulas of Z-N(1) consist of process parameters, L(time delay), $K_m$(gain) and $T_m$(time constant), but Z-N(2) method is based only on the ultimate gain $K_u$ and the ultimate period $T_u$ acquired normally by practical trial without any parameters of Z-N(1). In this paper, for the first step to seek mutual relations, the simple formulas of Z-N(2) are transformed into the formulas composed of the same parameters as Z-N(1) which is derived from the analysis of frequency characteristics. Then, the approximation of the actual ultimate frequency is proposed as important premise in the translation between Z-N(1) and (2). Such equalization and approximation brings a simple approximated formula which can explain how Z-N(1) is originated from the Z-N(2) in the form of formula. And a model system is adopted to compare the approximated formula to Z-N(1) and Z-N(2) methods, the results of which show the effectiveness of the proposals.

  • PDF

The Spiral Taping Treatment on Temporomandibular Disorder in oral Medicine (구강내과영역에서 측두하악장애 환자의 Spiral Taping 치료)

  • Kim, Myung-Hee;Lee, Jeong-Hun
    • Journal of Oral Medicine and Pain
    • /
    • v.36 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • The purpose of this study is introduce the spiral taping treatment on Temporomandibular Disorder in oral Medicine. The taping treatment is relatively simple and dosen't have any adverse effect, so it has high stability and superior effect of treatment. In this study, using the spiral taping treatment as one of the effective taping treatments, non-stretched tape was attatched to the muscles which set limit to the range of joint movement and cause pain to temporomandibular joint. With that treatment this study tried to make effective results of treatment of temporomandibular disorder. These results suggest spiral taping treatments contribute to the improvement of tempermandibular disorders. Further this study is needed for the confirmation of this effect of spiral taping treatments on temporomandibular disorders.

Study on Calibration Methods of Discharge Coefficient of Sonic Nozzles using Constant Volume Flow Meter

  • Jeong, Wan-Seop;Sin, Jin-Hyeon;Gang, Sang-Baek;Park, Gyeong-Am;Im, Jong-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.17-17
    • /
    • 2010
  • This paper address technical issues in calibrating discharge coefficients of sonic nozzles used to measure the volume flow rate of low vacuum dry pumps. The first challenging issue comes from the technical limit that their calibration results available from the flow measurement standard laboratories do not fully cover the low vacuum measurement range although the use of sonic nozzles for precision measurement of gas flow has been well established in NMIs. The second is to make an ultra low flow sonic nozzlesufficient to measure the throughput range of 0.01 mbar-l/s. Those small-sized sonic nozzles do not only achieve the noble stability and repeatability of gas flow but also minimize effects of the fluctuation of down stream pressures for the measurement of the volume flow rate of vacuum pumps. These distinctive properties of sonic nozzles are exploited to measure the pumping speed of low vacuum dry pumps widely used in the vacuum-related academic and industrial sectors. Sonic nozzles have been standard devices for measurement of steady state gas flow, as recommended in ISO 9300. This paper introduces two small-sized sonic nozzles of diameter 0.03 mm and 0.2 mm precisely machined according to ISO 9300. The constant volume flow meter (CVFM) readily set up in the Vacuum center of KRISS was used to calibrate the discharge coefficients of the machined nozzles. The calibration results were shown to determine them within the 3% measurement uncertainty. Calibrated sonic nozzles were found to be applicable for precision measurement of steady state gas flow in the vacuum process. Both calibrated sonic nozzles are demonstrated to provide the precision measurement of the volume flow rate of the dry vacuum pump within one percent difference in reference to CVFM. Calibrated sonic nozzles are applied to a new 'in-situ and in-field' equipment designed to measure the volume flow rate of low vacuum dry pumps in the semiconductor and flat display processes.

  • PDF

Development and Properties of Carbon monoxide Detector for Ambient Air monitoring (대기오염 측정용 일신화 탄소 검출기의 제작 및 특성)

  • Cho, Kyung-Haeng;Lee, Sang-Wha;Lee, Joung-Hae;Choi, Kyong-Sik
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.222-228
    • /
    • 2000
  • A detector for monitoring carbon monoxide (CO) in ambient air by nondispersive infrared (NDIR) spectroscopy has been developed and investigated its sensitivity and stability. The essential parts of the absorption cell are three spherical concave mirrors so as to improve the sensitivity by increasing the light path length in the cell. The radius and center of curvature of mirrors and position in the cell was calculated by computer simulation in order that the light path length may be 16m into the 50cm cell. The number of traversals and optical path properties were confirmed by laser beam alignment in transparent absorption cell. The photoconductive type lead selenide (PbSe) was used as CO sensing material, which was cooled to increase the responsibility by thermoelectric cooling method. The detection limit and span drift of the developed CO detector was 0.24ppm and 0.03ppm(v/v) respectively.

  • PDF

A Study on the Correlation between Static, Dynamic Standing Balance Symmetry and Walking Function in Stroke (뇌졸중 환자의 정적, 동적 선자세 균형 대칭성과 보행 기능의 상관관계 연구)

  • Kim, Joong-Hwi
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.73-81
    • /
    • 2012
  • Purpose: The aim of the present study was to measure the standing balance symmetry of stroke patients using a force-plate with computer system, and to investigate the correlation between the standing balance symmetry and that of the walking function in stroke patients. Methods: 48 patients with stroke (34 men, 14 women, $56.8{\pm}11.72$ years old) participated in this study. Static standing balance was evaluated by the weight distribution on the affected and the nonaffected lower limbs, sway path, sway velocity, and sway frequency, which reflected the characteristic of body sway in quiet standing. Dynamic standing balance was evaluated by anteroposterior and mediolateral sway angle, which revealed the limit of stability during voluntary weight displacement. Symmetry index of static standing balance, (SI-SSB) calculated by the ratio of the affected weight distribution for the nonaffected weight distribution, and symmetric index of dynamic standing balance (SI-SDB) by the ratio of the affected sway angle for the nonaffected sway angle. Functional balance assessed by a Berg balance scale (BBS), and the functional walking by 10m walking velocity, as well as the modified motor assessment scale (mMAS). Results: Static balance scales and SI-SSB was the only correlation with BBS (p<0.05). Dynamic balance scales and SI-DSB, not only was correlated with BBS, but also with 10m walking velocity and mMAS (p<0.01). Additionally, there was a significant difference between SI-SSB and that of SI-DSB (p<0.01). Conclusion: The balance and the walking function relate to real life in the stroke showed strong relationships with the dynamic standing balance symmetry in the frontal plane and the ability of anterior voluntary weight displacement in sagittal plane.