DOI QR코드

DOI QR Code

Free-standing Three Dimensional Graphene Incorporated with Gold Nanoparticles as Novel Binder-free Electrochemical Sensor for Enhanced Glucose Detection

  • Bui, Quoc Bao (Sustainable Developments in Civil Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang University) ;
  • Nguyen, Dang Mao (Department of Polymer and Composite Materials, Faculty of Material Science, University of Science, Vietnam National University Ho Chi Minh city (VNU)) ;
  • Nguyen, Thi Mai Loan (The National Centre of Drug Information and Adverse Drug Reaction Monitoring, Hanoi University of Pharmacy) ;
  • Lee, Ku Kwac (Institute of Carbon Technology, Jeonju University) ;
  • Kim, Hong Gun (Institute of Carbon Technology, Jeonju University) ;
  • Ko, Sang Cheol (Institute of Carbon Technology, Jeonju University) ;
  • Jeong, Hun (Institute of Carbon Technology, Jeonju University)
  • Received : 2018.05.16
  • Accepted : 2018.07.04
  • Published : 2018.09.30

Abstract

The electrochemical sensing performance of metal-graphene hybrid based sensor may be significantly decreased due to the dissolution and aggregation of metal catalyst during operation. For the first time, we developed a novel large-area high quality three dimensional graphene foam-incorporated gold nanoparticles (3D-GF@Au) via chemical vapor deposition method and employed as free-standing electrocatalysis for non-enzymatic electrochemical glucose detection. 3D-GF@Au based sensor is capable to detect glucose with a wide linear detection range of $2.5{\mu}M$ to 11.6 mM, remarkable low detection limit of $1{\mu}M$, high selectivity, and good stability. This was resulted from enhanced electrochemical active sites and charge transfer possibility due to the stable and uniform distribution of Au NPs along with the enhanced interactions between Au and GF. The obtained results indicated that 3D-GF@Au hybrid can be expected as a high quality candidate for non-enzymatic glucose sensor application.

Keywords

References

  1. T.D. Thanh, N.D. Chuong, H. Van Hien, T. Kshetri, L.H. Tuan, N.H. Kim, J.H. Lee, Prog. Mater. Sci., 2018, 96, 51-85. https://doi.org/10.1016/j.pmatsci.2018.03.007
  2. T.D. Thanh, J. Balamurugan, H.V. Hien, N.H. Kim, J.H. Lee, Biosens. Bioelectron., 2017, 96, 186-193. https://doi.org/10.1016/j.bios.2017.05.014
  3. J. Balamurugan, T.D. Thanh, N.H. Kim, J.H. Lee, Biosens. Bioelectron., 2016, 83, 68-76. https://doi.org/10.1016/j.bios.2016.04.040
  4. K. Gopalsamy, J. Balamurugan, T.D. Thanh, N.H. Kim, D. Hui, J.H. Lee, Compos. Part B Eng., 2017, 114, 319-327. https://doi.org/10.1016/j.compositesb.2017.01.061
  5. T.D. Thanh, N.D. Chuong, J. Balamurugan, H. Van Hien, N.H. Kim, J.H. Lee, Small, 2017, 13(39), 1-11.
  6. T.D. Thanh, N.D. Chuong, H. Van Hien, N.H. Kim, J.H. Lee, ACS Appl. Mater. Interfaces, 2018, 10(5), 4672-4681. https://doi.org/10.1021/acsami.7b16294
  7. Y. Li, Y. Zhong, Y. Zhang, W. Weng, S. Li, Sensors Actuators, B Chem., 2015, 206, 735-743. https://doi.org/10.1016/j.snb.2014.09.016
  8. X. Li, L. Zhi, Chem. Soc. Rev., 2018, 47(9), 3189-3216. https://doi.org/10.1039/C7CS00871F
  9. M.S. Artiles, C.S. Rout, T.S. Fisher, Adv. Drug Deliv. Rev., 2011, 63(14-15), 1352-1360. https://doi.org/10.1016/j.addr.2011.07.005
  10. S.K. Vashist, J.H.T. Luong, Carbon, 2015, 84, 519-550. https://doi.org/10.1016/j.carbon.2014.12.052
  11. B.. Hvolbaek, T.V.W.. Janssens, B.S.. J.K.. Norskov, Catalytic activity of Au nanoparticles, Nano Today, 2007, 2(4), 14-18. https://doi.org/10.1016/S1748-0132(07)70113-5
  12. D.T. Thompson, Nano Today, 2007, 2(4), 40-43. https://doi.org/10.1016/S1748-0132(07)70116-0
  13. P. Priecel, H.A. Salami, R.H. Padilla, Z. Zhong, J.A. Lopez-Sanchez, Cuihua Xuebao/Chinese J. Catal., 2016, 37(10), 1619-1650.
  14. R. Ciriminna, E. Falletta, C. Della Pina, J.H. Teles, M. Pagliaro, Angew. Chemie - Int. Ed., 2016, 55(46), 14210-14217. https://doi.org/10.1002/anie.201604656
  15. S.H. Lim, E.-Y. Ahn, Y. Park, Nanoscale Res. Lett., 2016, 11(1), 474. https://doi.org/10.1186/s11671-016-1694-0
  16. Y. Li, H.J. Schluesener, S. Xu, Gold Bull. 2010, 43(1), 29-41. https://doi.org/10.1007/BF03214964
  17. S.M. Shawky, A.M. Awad, W. Allam, M.H. Alkordi, S.F. EL-Khamisy, Biosens. Bioelectron., 2017, 92(15), 349-356. https://doi.org/10.1016/j.bios.2016.11.001
  18. H. Aldewachi, T. Chalati, M.N. Woodroofe, N. Bricklebank, B. Sharrack, P.H. Gardiner, Nanoscale, 2017, 10(1), 18-33.
  19. B.J. Lee, S.C. Cho, G.H. Jeong, Curr. Appl. Phys., 2015, 15(5), 563-568. https://doi.org/10.1016/j.cap.2015.02.013
  20. T.D. Thanh, J. Balamurugan, S.H. Lee, N.H. Kim, J.H. Lee, Biosens. Bioelectron, 2016, 81, 259-267. https://doi.org/10.1016/j.bios.2016.02.070
  21. M. Rybin, A. Pereyaslavtsev, T. Vasilieva, V. Myasnikov, I. Sokolov, A. Pavlova, E. Obraztsova, A. Khomich, V. Ralchenko, E. Obraztsova, Carbon, 2016, 96, 196-202. https://doi.org/10.1016/j.carbon.2015.09.056
  22. Z. Zafar, Z.H. Ni, X. Wu, Z.X. Shi, H.Y. Nan, J. Bai, L.T. Sun, Carbon, 2013, 61, 57-62. https://doi.org/10.1016/j.carbon.2013.04.065
  23. T.D. Thanh, J. Balamurugan, J.Y. Hwang, N.H. Kim, J.H. Lee, Carbon, 2016, 98, 90-98. https://doi.org/10.1016/j.carbon.2015.10.081
  24. T. Han, J. Jin, C. Wang, Y. Sun, Y. Zhang, Y. Liu, Nanomaterials, 2017, 7, 40. https://doi.org/10.3390/nano7020040
  25. Y. Sim, J. Kwak, S.-Y. Kim, Y. Jo, S. Kim, S.Y. Kim, J.H. Kim, C.-S. Lee, J.H. Jo, S.-Y. Kwon, J. Mater. Chem. A., 2018, 6(4), 1504-1512. https://doi.org/10.1039/C7TA07598G
  26. W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan, C.S. Ozkan, Sci. Rep., 2014, 4, 9-14.
  27. X. Wang, X. Guo, J. Chen, C. Ge, H. Zhang, Y. Liu, L. Zhao, Y. Zhang, Z. Wang, L. Sun, J. Mater. Sci. Technol., 2017, 33(3), 246-250. https://doi.org/10.1016/j.jmst.2016.11.029
  28. G. Zhu, Z. He, J. Chen, J. Zhao, X. Feng, Y. Ma, Q. Fan, L. Wang, W. Huang, Nanoscale., 2014, 6(2), 1079-1085. https://doi.org/10.1039/C3NR04495E
  29. T.D. Thanh, J. Balamurugan, N.T. Tuan, H. Jeong, S.H. Lee, N.H. Kim, J.H. Lee, Biosens. Bioelectron., 2017, 89(2), 750-757. https://doi.org/10.1016/j.bios.2016.09.076
  30. W. Choi, M.A. Shehzad, S. Park, Y. Seo, RSC Adv., 2017, 7(12), 6943-6949. https://doi.org/10.1039/C6RA27436F
  31. R. Blume, P.R. Kidambi, B.C. Bayer, R.S. Weatherup, Z.J. Wang, G. Weinberg, M.G. Willinger, M. Greiner, S. Hofmann, A. Knop-Gericke, R. Schlogl, Phys. Chem. Chem. Phys., 2014, 16(47), 25989-26003. https://doi.org/10.1039/C4CP04025B
  32. T. Li, J.A. Yarmoff, Surf. Sci., 2018, 675, 70-77. https://doi.org/10.1016/j.susc.2018.05.001
  33. L.C. Wang, Y. Zhong, H. Jin, D. Widmann, J. Weissmüller, R.J. Behm, Beilstein J. Nanotechnol., 2013, 4, 111-128. https://doi.org/10.3762/bjnano.4.13
  34. M. Taei, E. Havakeshian, H. Salavati, F. Abedi, RSC Adv., 2016, 6(33), 27293-27300. https://doi.org/10.1039/C5RA20915C
  35. W. Liu, X. Wu, X. Li, RSC Adv., 2017, 7(58), 36744-36749. https://doi.org/10.1039/C7RA06909J
  36. L. Yang, Y. Zhang, M. Chu, W. Deng, Y. Tan, M. Ma, X. Su, Q. Xie, S. Yao, Biosens. Bioelectron, 2014, 52, 105-110. https://doi.org/10.1016/j.bios.2013.08.038
  37. J. Wang, H. Gao, F. Sun, C. Xu, Sensors Actuators, B Chem., 2014, 191, 612-618. https://doi.org/10.1016/j.snb.2013.10.034
  38. M. Liu, R. Liu, W. Chen, Biosens. Bioelectron., 2013, 45, 206-212. https://doi.org/10.1016/j.bios.2013.02.010
  39. A. Weremfo, S.T.C. Fong, A. Khan, D.B. Hibbert, C. Zhao, Electrochim. Acta., 2017, 231, 20-26. https://doi.org/10.1016/j.electacta.2017.02.018
  40. T. Kangkamano, A. Numnuam, W. Limbut, P. Kanatharana, P. Thavarungkul, Sensors Actuators, B Chem. 2017, 246, 854-863. https://doi.org/10.1016/j.snb.2017.02.105
  41. D. Geng, X. Bo, L. Guo, Sensors Actuators, B Chem., 2017, 244, 131-141. https://doi.org/10.1016/j.snb.2016.12.122