DOI QR코드

DOI QR Code

Assessment of Low Carbon Steel Corrosion Inhibition by Eco-Friendly Green Chaenomeles sinensis Extract in Acid Medium

  • Chung, Ill-Min (Department of Crop Science, College of sanghr Life Science, Konkuk University) ;
  • Hemapriya, Venkatesan (Department of Chemistry, PSGR Krishnammal College for Women) ;
  • Ponnusamy, Kanchana (Department of Chemistry, PSGR Krishnammal College for Women) ;
  • Arunadevi, Natarajan (Department of Chemistry, PSGR Krishnammal College for Women) ;
  • Chitra, Subramanian (Department of Chemistry, PSGR Krishnammal College for Women) ;
  • Chi, Hee-Youn (Department of Crop Science, College of sanghr Life Science, Konkuk University) ;
  • Kim, Seung-Hyun (Department of Crop Science, College of sanghr Life Science, Konkuk University) ;
  • Prabakaran, Mayakrishnan (Department of Crop Science, College of sanghr Life Science, Konkuk University)
  • Received : 2018.05.06
  • Accepted : 2018.07.16
  • Published : 2018.09.30

Abstract

The impact of methanol extract of Chaenomeles sinensis (C. sinensis) leaves on acid corrosion of low carbon steel was assessed by gravimetric and electrochemical methods. Phytochemical characterization by total phenolic content (TPC), and total flavonoids content (TFC) of the extract was performed. The TPC and TFC concentrations were identified as 193.50 and 40.55 mg/g. Efficiency increased remarkably in the presence of inhibitor and found as concentration dependent. A maximum inhibition efficiency of 93.19% was achieved using 2000 ppm of the C. sinensis inhibitor. Impedance and surface morphology analysis by SEM and AFM revealed that the anticorrosive activity results from the protective film of phytochemical components of C. sinensis extract adsorbed on the metal surface.

Keywords

References

  1. J.D. Hatfield, A.V. Slack, G.L. Crow, H.B. Shaffer, J. Agric. Food Chem., 1958, 6(7), 524-531. https://doi.org/10.1021/jf60089a005
  2. M.A. Quraishi, I. Ahamad, A.K. Singh., Mater Chem. Phys, 2008, 112(3), 1035-1039. https://doi.org/10.1016/j.matchemphys.2008.07.011
  3. M. Yadav, D. Behera, U. Sharma, Der Chemica Sinica, 2012, 3, 262-268.
  4. F. Bentiss, M. Bouanis, B. Mernari, M. Traisnel, H. Vezin, M. Lagrenee., Appl. Surf. Sci, 2007, 253(7), 3696-3704. https://doi.org/10.1016/j.apsusc.2006.08.001
  5. H. Keles, M. Keles, I. Dehri, O. Serindag., Mater Chem Phys, 2008, 112(1), 173-179. https://doi.org/10.1016/j.matchemphys.2008.05.027
  6. S. Muller, S. Ritzvi, K. Yokose, W. Yang, M. Jacket, Corrosion Inhibitors, SCUP Home, October, 2009.
  7. I.B. Obot, in: M. Aliofkhazraei (Ed.), Recent Advances in Computational Design of Organic Materials for Corrosion Protection of Steel in Aqueous Media, Developments in Corrosion Protection, InTech, 2014, 2017, 123-151.
  8. G. Mayakrishnan, S. Pitchai, K. Raman, A.R. Vincent, S. Nagarajan, Ionics, 2011, 17(9), 843-852. https://doi.org/10.1007/s11581-011-0584-9
  9. E.E. Oguzie, Mater. Chem. Lett, 2005, 59(8-9), 1076-1079. https://doi.org/10.1016/j.matlet.2004.12.009
  10. M. Gopiraman, N. Selvakumaran, D. Kesavan, R. Karvembu, Prog. Org. Coat, 2012, 73(1), 104-111. https://doi.org/10.1016/j.porgcoat.2011.09.006
  11. I.B. Obot, N.O. Obi-Egbedi, Corros. Sci, 2010, 52(1), 198-204. https://doi.org/10.1016/j.corsci.2009.09.002
  12. M.A. Amin, S.S.A. El-Rehim, E.E.F. El-Sherbini, R.S. Bayoumi, Electrochim. Acta, 2007, 52(11), 3588-3600. https://doi.org/10.1016/j.electacta.2006.10.019
  13. H. Ashassi-Sorkhabi, D. Seifazadeh, M.G. Hosseini, EN, Corros. Sci, 2008, 50(12), 3363-3370. https://doi.org/10.1016/j.corsci.2008.09.022
  14. M. Prabakaran, S.H. Kim, N. Mugila, V. Hemapriya, K. Parameswari, S. Chitra, I.M. Chung, J. Ind. Eng. Chem, 2017, 52, 235-242. https://doi.org/10.1016/j.jiec.2017.03.052
  15. M. Prabakaran, S.H. Kim, V. Hemapriya, M. Gopiraman, I.S. Kim, I.M. Chung, RSC Adv, 2016, 6(62), 57144-57153. https://doi.org/10.1039/C6RA09637A
  16. M. Prabakaran, S.H. Kim, V. Hemapriya, I.M. Chung, Res. Chem. Intermed, 2016, 42(4), 3703-3719. https://doi.org/10.1007/s11164-015-2240-x
  17. M. Prabakaran, S.H. Kim, K. Kalaiselvi, V. Hemapriya, I.M. Chung, J. Taiwan Inst. Chem. Eng, 2016, 59, 553-562. https://doi.org/10.1016/j.jtice.2015.08.023
  18. L.B.M. Ocampo, M.G.V. Cisneros, J.G.G. Rodriguez, Int. J. Electrochem. Sci, 2015, 10, 388-403.
  19. V. Rajeswari, D. Kesavan, M. Gopiraman, P. Viswanathamurthi, K. Poonkuzhali, T. Palvannan, Appl. Surf. Sci, 2014, 314, 537-545. https://doi.org/10.1016/j.apsusc.2014.07.017
  20. S.A. Umoren, Z.M. Gasem, I.B. Obot, Ind. Eng. Chem. Res, 2013, 52(42), 14855-14865. https://doi.org/10.1021/ie401737u
  21. E.E. Oguzie, C.B. Adindu, C.K. Enenebeaku, C.E. Ogukwe, M.A. Chidiebere, K.L. Oguzie, J. Phys. Chem. C, 2012, 116(25), 13603-13615. https://doi.org/10.1021/jp300791s
  22. E.E. Oguzie, C.E. Ogukwe, J.N. Ogbulie, F.C., Nwanebu, C.B Adindu, I.O. Udeze, K.L. Oguzie, F.C. Eze, J. Mater. Sci, 2012, 47(8), 3592-3601. https://doi.org/10.1007/s10853-011-6205-1
  23. S. Garai, S. Garai P Jaisankar, J.K Singh, A. Elango, Corros. Sci, 2012, 60, 193-204. https://doi.org/10.1016/j.corsci.2012.03.036
  24. H. Gerengi, H.I. Sahin, Ind. Eng. Chem. Res, 2011, 51(2), 780-787. https://doi.org/10.1021/ie201776q
  25. W.B.W. Nik, F. Zulkifli, O. Sulaiman, K.B. Samo, R. Rosliza, IOP Conf. Ser.: Mater. Sci. Eng, 2012, 36, 012043.
  26. M. Lebrini, F. Robert, A. Lecante, C. Roos, Corros. Sci, 2011, 53(2), 687-695. https://doi.org/10.1016/j.corsci.2010.10.006
  27. P.C. Okafor, E.E. Ebenso, U.J. Ekpe, Int. J. Electrochem. Sci, 2010, 5(7), 978-993.
  28. A.K. Satapathy, G. Gunasekaran, S.C. Sahoo, K. Amit, P.V. Rodrigues, Corros. Sci, 2009, 51(12), 2848-2856. https://doi.org/10.1016/j.corsci.2009.08.016
  29. P.C. Okafor, M.E. Ikpi, I.E. Uwaha, E.E. Ebenso, U.J. Ekpe, S.A. Umoren, Corros. Sci, 2008, 50(8), 2310-2317. https://doi.org/10.1016/j.corsci.2008.05.009
  30. S. Sancheti, S. Sancheti, S.Y. Seo, Chaenomeles Sinensis: A Potent ${\alpha}$-and ${\beta}$-Glucosidase Inhibitor, Am. J. Pharm. & Toxicol, 2009, 4(1), 8-11. https://doi.org/10.3844/ajptsp.2009.8.11
  31. Y. Hamauzu, T. Inno, C. Kume, M. Irie, K. Hiramatsu, J. Agric. Food Chem, 2006, 54(3), 765-772. https://doi.org/10.1021/jf052236y
  32. Y. Hamauzu, H. Yasui, T. Inno, C. Kume, M. Omanyuda, J. Agric. Food Chem, 2005, 53(4), 928-934. https://doi.org/10.1021/jf0494635
  33. R. Sawai, K. Kuroda, T. Shibata, R. Gomyou, K. Osawa, K. Shimizu, J. Ethnopharmacol, 2008, 118(1), 108-112. https://doi.org/10.1016/j.jep.2008.03.013
  34. S. Sen, B. De, N. Devanna, R. Chakraborty, Chin. J. Nat. Med, 2013, 11(2), 149-157. https://doi.org/10.3724/SP.J.1009.2013.00149
  35. A.Y. El-Etre, A.I. Ali, Chin. J. Chem. Eng, 2017, 25(3), 373-380. https://doi.org/10.1016/j.cjche.2016.08.017
  36. M. Prabakaran, S.H. Kim, A. Sasireka, K. Kalaiselvi, I.M. Chung, J. Adhes. Sci. Technol, 2018, 32(18), 2054-2069. https://doi.org/10.1080/01694243.2018.1462947
  37. M. Outirite, M. Lagrenee, M. Lebrini, M. Traisnel, C. Jama, H. Vezin, F. Bentiss, Electrochim. Acta, 2010, 55(5), 1670-1681. https://doi.org/10.1016/j.electacta.2009.10.048
  38. D. Kesavan, M.M Tamizh, M. Gopiraman, N. Sulochana, R. Karvembu, J. Surfact Deterg, 2012, 15(5), 567-576. https://doi.org/10.1007/s11743-012-1338-z
  39. K. Kalaiselvi, I.M. Chung, S.H. Kim, M. Prabakaran, Anti-Corros. Methods Mater, 2018, 65(4), 408-416. https://doi.org/10.1108/ACMM-12-2017-1866
  40. I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Int. J. Electrochem. Sci, 2009, 4(6), 863-877.
  41. G.T. Xavier, B. Thirumaliraj, M. Jaganathan, Int. J. Corros, 2015, 2015. 1-15.
  42. C.S. Venkatechalam, S.R. Rajagopalan, M.V.C. Sastry, Electochimica Acta, 1981, 26(9) 1219-1224. https://doi.org/10.1016/0013-4686(81)85102-X
  43. S. Martinez, I. Stern, Appl. Surf. Sci, 2002, 199(1-4), 83-89. https://doi.org/10.1016/S0169-4332(02)00546-9
  44. F. Bentiss, M. Lebrini, M. Lagrenee, Corros. Sci, 2005, 47(12), 2915-2913 https://doi.org/10.1016/j.corsci.2005.05.034
  45. A.N. Eteram, A.H. Al-Moubaraki, Mater Chem. Phys, 2008, 110(1), 145-154. https://doi.org/10.1016/j.matchemphys.2008.01.028
  46. W.H. Li, Q. He, C.L. Pei, B.R. Hou, J. Appl. Electrochem, 2008, 35, 289-295.
  47. E.E. Oguzie, M.A. Chidiebere, K.L. Oguzie, C.B. Adindu, H. Momoh-Yahaya, Chem. Eng. Commun, 2014, 201(6), 790-803. https://doi.org/10.1080/00986445.2013.790816
  48. Z. Tao, W. He, S. Wang, G. Zhou, Ind. Eng. Chem. Res, 2013, 52(50), 17891-17899. https://doi.org/10.1021/ie402693d
  49. S.A. Umoren, I.B. Obot, A.U. Israel, P.O. Asuquo, M.M. Solomon, U.M. Eduok, A.P. Udoh, J. Ind. Eng. Chem, 2014, 20(5), 3612-3622. https://doi.org/10.1016/j.jiec.2013.12.056
  50. C.B.N. Unnisa, G.N. Devi, V. Hemapriya, S. Chitra, I.M. Chung, S.H. Kim, M. Prabakaran, Constr. Build. Mater, 2018, 165, 866-876. https://doi.org/10.1016/j.conbuildmat.2018.01.080
  51. Y. Qiang, S. Zhang, L. Guo, X. Zheng, B. Xiang, S. Chen, Corros. Sci., 2017, 119, 68-78. https://doi.org/10.1016/j.corsci.2017.02.021
  52. Y. Qiang, S. Zhang, B. Tan, S. Chen, Corros. Sci, 2018, 133, 6-16. https://doi.org/10.1016/j.corsci.2018.01.008
  53. M. Prabakaran, S.H. Kim, V. Hemapriya, I.M. Chung, J. Ind. Eng. Chem, 2016, 37, 47-56. https://doi.org/10.1016/j.jiec.2016.03.006
  54. V. Hemapriya, M. Prabakaran, K. Parameswari, S. Chitra, S.H. Kim, I.M. Chung, Anti-Corros. Methods Mater, 2017, 64(3), 306-314. https://doi.org/10.1108/ACMM-07-2015-1562
  55. N. M'hiri, D. Veys-Renaux, E. Rocca, I. Ionnou, N.M. Boudhrioua, M. Ghoul, Corros. Sci., 2016, 102, 55-62. https://doi.org/10.1016/j.corsci.2015.09.017
  56. M. Prabakaran, S.H. Kim, A. Sasireka, V. Hemapriya, I.M. Chung, New J. Chem, 2017, 41(10), 3900-3907. https://doi.org/10.1039/C6NJ03760G
  57. N.K. Gupta, C. Verma, M.A. Quraishi, A.K. Mukherjee, J. Mol. Liq, 2016, 215, 47-57. https://doi.org/10.1016/j.molliq.2015.12.027
  58. M. Prabakaran, S.H. Kim, Y.T. Oh, V. Raj, I.M. Chung, J. Ind. Eng. Chem, 2017, 45, -386.
  59. V. Hemapriya, M. Prabakaran, K. Parameswari, S. Chitra, S.H. Kim, I.M. Chung, J. Ind. Eng. Chem, 2016, 40, 106-117. https://doi.org/10.1016/j.jiec.2016.06.013