• 제목/요약/키워드: Stability Limit

검색결과 1,066건 처리시간 0.024초

요산의 초음파 전기화학적 정량 (Sono-electrochemical Determination of Uric Acid)

  • 조형화;배준웅
    • 전기화학회지
    • /
    • 제3권4호
    • /
    • pp.232-234
    • /
    • 2000
  • 전기화학적인 방법으로 요산을 정량함에 있어서 전극의 활성을 증가시키기 위하여 초음파를 조사하여 요산의 정량을 시도하였다. 요산의 정량의 최적조건을 조사하기 위하여 초음파의 세기, 시간, 전해질 용액의 pH, 온도 등의 영향을 조사하였고 전극의 안정성에 대해서도 조사하였다. 최적 조건은 $25.0^{\circ}C$, pH 7.0,초음파의 파워 $20W/cm^2$의 조건이었으며 $8.0{\times}10^{-6}\~5.0\times10^{-4}M$의 직선범위를 가졌고, 검출한계는 $6.5\times10^{-6}M$이었다.

Simple Preparation of Diaphorase/Polysiloxane Viologen Polymer Modified Electrode for Sensing NAD and NADH

  • Song, Ji-Eun;Hong, Zhenyu;Nagarale, Rajaram Krishna;Shin, Woon-Sup
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.163-167
    • /
    • 2011
  • Nicotinamide adenine dinucleotide, $NAD^+$, and its reduced form, NADH, play important roles as coenzymes in many enzymatic reactions. Electrochemical methods for $NAD^+$ or NADH detection or generation are drawn attention because it can provide the simple and low cost platform with fairly good sensitivity. In this study, the polysiloxane viologen polymer/diaphorase/hydrophilic polyurethane (PSV/DI/HPU) modified electrodes were simply prepared and demonstrated for bio-electrocatalytic $NAD^+$ sensors. The electrodes were co-immobilized with diaphorase and polysiloxane viologen polymer as an electron mediator followed by the overcoating with HPU membrane. The mixture of the enzyme and the electron mediator was well stabilized within HPU membrane and exhibited good reversibility and stability. The sensitivity was 0.2 $nA{\cdot}{\mu}M^{-1}$ and the detection limit was 28 ${\mu}M$ with a response time of 50 s ($t_{90%}$). The capability for NADH sensor was also observed on the PSV/DI/HPU electrode.

연료극 지지체식 고체산화물 연료전지의 기계적 및 전기적 특성에 미치는 Ni-YSZ의 미세구조의 영향 (Effect of Microstructure on Mechanical and Electrical Properties in Ni-YSZ of Anode Supported SOFC)

  • 최미화;최진혁;이태희;유영성
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.592-598
    • /
    • 2011
  • Electrode of solid oxide fuel cell must have sufficient porosity to allow gas transport to the interface with electrolyte effectively but high porosity has a negative impact on structural stability in electrode support. Thus, the upper limit of porosity is based on consideration of mechanical strength of electrode. In this study, the effect of microstructure of Ni-YSZ anode supported SOFC on the mechanical and electrical property was investigated. LSCF composite cathode and 8YSZ electrolyte were used. The porosity of the anode was modified by the amount of graphite powder and added graphite contents were 24, 18, 12 vol%, respectively. The higher the porosity, the better the electrical performance, $P_{max}$. While the flexural strength decreased with increasing the amount of graphite. But the rate of increase in electrical performance and the rate of decrease in mechanical strength were not directly proportional to amount of graphite. The optimum graphite content incorporating both electrical and mechanical performance was 18 vol%.

불확실한 날씨 상태를 고려한 확률론적 방법의 총 송전용량 평가 (Assessment of Probabilistic Total Transfer Capability Considering Uncertainty of Weather)

  • 박진욱;김규호;신동준;송경빈;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권1호
    • /
    • pp.45-51
    • /
    • 2006
  • This paper proposes a method to evaluate the Total Transfer Capability (TTC) by considering uncertainty of weather conditions. TTC is limited not only by the violation of system thermal and voltage limits, but also restricted by transient stability limit. Impact of the contingency on the power system performance could not be addressed in a deterministic way because of the random nature of the system equipment outage and the increase of outage probability according to the weather conditions. For these reasons, probabilistic approach is necessary to realize evaluation of the TTC. This method uses a sequential Monte Carlo simulation (MCS). In sequential simulation, the chronological behavior of the system is simulated by sampling sequence of the system operating states based on the probability distribution of the component state duration. Therefore, MCS is used to accomplish the probabilistic calculation of the TTC with consideration of the weather conditions.

순간전압강하 극복을 위한 대용량 유도전동기 제어방식 설계 및 해석 (Design and Analysis of Large Induction Motor Control Coping with Voltage Sag)

  • 조성돈;임성호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1056-1058
    • /
    • 1998
  • Voltage dips caused by transmission system faults are usually of a short duration. High speed relaying and breaker operation will typically limit the disturbance to 0.1 seconds. Most motor controllers obtain their control power directly from the bus by means of a control transformer. Under this condition, a voltage dip can cause the contactor to drop out. disconnecting the motor from the line. The rapid re-energizing of the controller is in effect a fast reclosure which may result in motor damage. The time delay re-energizing of controller will result in a greater loss of speed and possibly loss of stability. Other means of controller can be used to prevent the motor from being disconnected from line during the fault. This can be accomplished by DC power controller or mechanically latched controller. This paper demonstrates that DC power controller or mechanically latched type controller to prevent the motor from being disconnected from line during the fault is, the most effective in minimizing speed reduction, transient motor current, transient motor torque and transient shaft torque by EMTP calculation.

  • PDF

Comparing the generalized Hoek-Brown and Mohr-Coulomb failure criteria for stress analysis on the rocks failure plane

  • Mohammadi, M.;Tavakoli, H.
    • Geomechanics and Engineering
    • /
    • 제9권1호
    • /
    • pp.115-124
    • /
    • 2015
  • Determination of mobilized shear strength parameters (that identify stresses on the failure plane) is required for analyzing the stability by limit equilibrium method. Generalized Hoek-Brown (GHB) and Mohr-Coulomb (MC) failure criteria are usually used for obtaining stresses on the plane of failure. In the present paper, the applicability of these criteria for determining the stresses on failure plane is investigated. The comparison is based on stresses on the real failure plane which are obtained from the Mohr stress circle. To do so, 18 sets of data (consist of principal stresses and angle of failure plane) presented in the literature are used. In addition, the values account for (VAF) and the root mean square error (RMSE) indices were calculated to check the determination performance of the obtained results. Values of VAF and RMSE for the normal stresses on the failure plane evaluated from MC are 49% and 31.5 where for GHB are 55% and 30.5, respectively. Also, for the shear stresses on failure plane, they are 74% and 36 for MC, 76% and 34.5 for GHB. Results show that the obtained stresses and angles of failure plane for each criterion differ from real ones, but GHB results are closer to the empirical results. Also, it is inferred that results are affected by the failure envelope not real failure plane. Therefore, obtained shear strength parameters are not mobilized. Finally, a multivariable regressed relation is presented for determining the stresses on the failure plane.

직분식 엔진에서 연료공급 조건에 따른 CNG와 공기의 혼합 및 연소특성 (Mixing and Combustion Characteristics of a CNG and Air according to Fuel Supply Conditions in a DI Engine)

  • 강정호;박종상;염정국;정성식;하종률
    • 한국분무공학회지
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2008
  • It was investigated how fuel injection timing - early injection and later injection - in conjunction with throttle open rate effect the fuel-air mixing characteristics, Engine power, combustion stability and emission characteristics on a DI CNG spark Engine and control system that had been modified and designed according to the author's original idea. It was verified that the combustion characteristics were changed according to fuel injection timings and Engine conditions determined by different throttle open rates and rpm. It was found that the combustion characteristics greatly improved at the complete open throttle rate with an early injection timing and at the part throttle rate with a late injection timing. Combustion duration was governed by flame propagation duration in a late injection timing and by an early flame development duration in an early injection timing. As the result, we discovered that combustion duration is shortened, lean limit is improved, air-fuel mixing conditions controlled, and emissions reduced through control of fuel injection timing according to change of the throttle open rate.

  • PDF

Electro-Catalytic Oxidation of Amoxicillin by Carbon Ceramic Electrode Modified with Copper Iodide

  • Karim-Nezhad, Ghasem;Pashazadeh, Ali;Pashazadeh, Sara
    • 대한화학회지
    • /
    • 제57권3호
    • /
    • pp.322-328
    • /
    • 2013
  • Copper iodide was employed as a modifier for preparation of a new carbon ceramic electrode. For the first time, the catalytic oxidation of amoxicillin (AMX) was demonstrated by cyclic voltammetry, chronoamperometry and amperometry methods at the surface of this modified carbon ceramic electrode. The copper iodide modified sol-gel derived carbon ceramic (CIM-SGD-CC) electrode has very high catalytic ability for electrooxidation of amoxicillin. The catalytic oxidation peak current was linearly dependent on the amoxicillin concentration and the linearity range obtained was 100 to 1000 ${\mu}mol\;L^{-1}$ with a detection limit of 0.53 ${\mu}mol\;L^{-1}$. The diffusion coefficient ($D=(1.67{\pm}0.102){\times}10^{-3}\;cm^2\;s^{-1}$), and the kinetic parameter such as the electron transfer coefficient (${\alpha}$) and exchange current density ($j_0$) for the modified electrode were calculated. The advantages of the modified CCE are its good stability and reproducibility of surface renewal by simple polishing, excellent catalytic activity and simplicity of preparation.

Integrated Microdisk Gold Electrode Modified with Metal-porphyrin and Metal-phthalocyanines for Nitric Oxide Determination in Biological Media

  • Kim, Il-Kwang;Bae, Hyun-Ok;Oh, Gi-Soo;Chung, Hun-Taeg;Kim, Young-Jin;Chun, Hyun-Ja
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권11호
    • /
    • pp.1579-1584
    • /
    • 2003
  • An integrated gold microdisk electrode was constructed and modified with metal-porphyrin or metal-phthalocyanines for NO determination in biological media. Microanalysis of NO using square wave anodic stripping voltammetry in $1\;{\times}\;10^{-2}$ M $HClO_4$ was optimal when the accumulation potential was 0.1 V, frequency 100 Hz, and the scan rate was 200 mV/s. When the electrode was modified with metal-porphyrin or metal-phthalocyanines, the anodic peak currents of NO increased due to the catalytic oxidation of NO. In case of Fe(II)-phthalocyanine modified electrode, the peak currents remarkably increased and the sensitivity was high. The calibration curve had good linearity in the range from $3.6\;{\times}\;10^{-5}$ M to $7.2\;{\times}\;10^{-7}$ M, and the detection limit was $5.7\;{\times}\;10^{-7}$ M. For the structural stability and increased sensitivity, Fe(II)-phthalocyanine modified gold microdisk electrode coated with Nafion was applied to determination of NO released from cultured macrophase.

High Coercive Nd-Fe-B Sintered Magnets for High Temperature Application

  • Kim, D.H.;Kim, A.S.;Lim, T.H.;Jang, T.S.
    • Journal of Magnetics
    • /
    • 제14권1호
    • /
    • pp.27-30
    • /
    • 2009
  • Various sintered magnets containing $28{\sim}31\;wt%$ Nd and $0{\sim}7\;wt%$ Dy were evaluated for coercivity and irreversible flux loss as a preliminary study to develop highly-coercive, high-temperature magnets that can be applied for driving motors in a hybrid vehicle. The sintered magnets were prepared in sequence of strip casting, HD treatment, jet milling, magnetic field pressing, sintering and post-annealing. Increasing Dy content and adjusting post-annealing temperature monotonically increased coercivity of magnets from about 14 kOe to 30 kOe. A magnet containing 28 wt% Nd and 7 wt% Dy exhibits a $(BH)_{max}$+$_i{H_c}$ value of almost 64. This is very close to what the automobile industry considers as the minimum value (65) for a hybrid vehicle system. Moreover, irreversible flux loss of the magnet was about 3% at $200^{\circ}C$, which is well less than the allowable limit (5%) to a driving motor in hybrid vehicles.