• Title/Summary/Keyword: Stability Analysis Model

Search Result 2,347, Processing Time 0.026 seconds

DYNAMICAL ANALYSIS OF A PLANT-HERBIVORE MODEL : BIFURCATION AND GLOBAL STABILITY

  • SAHA TAPAN;BANDYOPADHYAY MALAY
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.327-344
    • /
    • 2005
  • The first part of the paper deals with a brief introduction of the plant-herbivore model system along with deterministic analysis of local stability and Hopf-bifurcations. The second part consists of stability analysis of the limit cycle arising from Hopf-bifurcation and uniqueness of limit cycle. The third part deals with the study of global stability of the model system under consideration.

Construction Monitoring of Geotextile Tube at Young-Jin Bay and Stability Analysis by Hydraulic Model Tests (영진만 지오텍스타일 튜브의 현장 시공계측 및 수리모형시험을 통한 안정성분석)

  • 신은철;오영인;이명호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.549-556
    • /
    • 2002
  • Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins and jetty). It can also be used to isolate contaminated material from harbor, detention basin dredging, and to use this unit as dikes for reclamation work. Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. The stability analysis of geotextile tube is composed geotechnical and hydrodynamic analysis. The stability check points are sliding failure, overturning, bearing capacity failure against the wave attack. In this paper presented the construction procedure and in-situ measurement(properties of filling material, effective height variation, stress variation at geotextile tube bottom) of geotextile tube at Young-Jin Bay and stability analysis by theoretical method and hydraulic model tests

  • PDF

Robust Stability Analysis for a Fuzzy Feedback Linearization Method using a Takagi-Sugeno Fuzzy Model

  • Kang, Hyung-Jin;Cheol Kwon;Lee, Hee-Jin;Park, Mignon
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.28-36
    • /
    • 1997
  • In this paper, robust stability analysis for the fuzzy feedback linearization regulator is presented. Well-known Takagi-Sugeno fuzzy model is used as the MISO nonlinear plant model. Uncertainty and disturbance are assumed to be included in the model structure with known bounds. For these structured uncertainty and disturbances, robust stability of the close system is analyzed in both input-output sense and Lyapunov sense. The robust stability conditions are proposed by using multivariable circle criterion and the relationship between input-output stability and Lyapunov stability. The proposed stability analysis is illustrated by a simple example.

  • PDF

Study of Effect of Tractive Force on Bicycle Self-Stability (구동력을 고려한 자전거 안정성에 관한 연구)

  • Souh, Byung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1319-1326
    • /
    • 2012
  • This study focuses on the influence of tractive forces on the self-stability of a bicycle. The eigen-value analysis of the self-stability of a passive rider control linear bicycle model can be used to analyze the self-stability. A linear bicycle model with front and rear driving forces is developed. The influence of tractive forces on the self-stability is identified by using the developed model. A nonlinear multi-body bicycle model is used to confirm the results of the linear analysis.

The Assessment of Landslide Hazards in Gyeonggi Icheon area using GIS-based SINMAP Model Analysis (GIS기반의 SINMAP을 통한 경기도 이천지역의 산사태 위험도 분석)

  • Kwon, Ki-Bum;Lee, Hee-Chul;Chun, Jin-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.782-789
    • /
    • 2010
  • Landslides cause enormous economic losses and casualties. Korea has mountainous regions and heavy slopes in most parts of the land and has consistently built new roads and large-scale housing complexes according to its industrial and urban growth. As a result, the damage from landslides becomes greater every year. In this study, performed a GIS-based landslide hazard analysis by SINMAP(Stability Index MAPping) model in Gyeonggi Icheon area coupling with geomorphological and geological data. SINMAP model has its theoretical basis in the infinite plane slope stability model with wetness obtained from a topographically based steady state model of hydrology. To Gyeonggi Icheon area landslides hazards evaluated, these SINMAP model were analysed results while simultaneously referring to the stability index map, where lines distinguish the zones categorized into the different stability classes and a table giving summary statistics.

  • PDF

Analysis of the Static and Dynamic Stability Properties of the Unmaned Airship

  • Lee, Hae Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.82-94
    • /
    • 2001
  • The purpose of this paper is to analyze the static and dynamic stability-of the unmanned airship under development ; the target airship's over-all length of hull is 50m and the maximum diameter is 12.5m. For the analysis, the dynamic model of an airship was defined and both the nonlinear and linear dynamic equations of motion were derived. Two different configuration models (KA002Y and KA003Y) of the airship were used for the target model of the static stability analysis and the dynamic stability analysis. From the result of analyses, though the airship is unstable in static stability, dynamic characteristics of the airship can provide the stable dynamic stability. All of the results, airship models and dynamic flight equations will be an important basement and basic information for the next step of developing the automatic flight control system(AFCS) and the stability augmentation system(SAS) for the unmanned airship as well as for the stratospheric airship in the future.

  • PDF

Evaluation of Tunnel Face Stability with the Consideration of Seepage Forces (침투력을 고려한 토사터널 막장의 안정성 평가방법에 대한 고찰)

  • 남석우;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.193-200
    • /
    • 1999
  • Since Broms and Bennermark(1967) suggested the face stability criterion based on laboratory extrusion tests and field observations, the face stability of a tunnel driven in cohesive material has been studied by several authors. And recently, more general solution for the tunnel front is given by Leca and Panet(1988). They adopted a limit state design concept to evaluate the face stability of a shallow tunnel driven into cohesionless material and showed that the calculated upper bound solution represented the actual behavior reasonably well. In this study, two factors are simultaneously considered for assessing tunnel face stability: One is the effective stress acting on the tunnel front calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady state ground water flow. The model tests were performed to evaluate the seepage force acting on the tunnel front and these results were compared with results of numerical analysis. Consequently, the methodology to evaluate the stability of a tunnel face including limit analysis and seepage analysis is suggested under the condition of steady state ground water flow.

  • PDF

Dynamic Behavior Analysis of Railway Bridge considering Track Stiffness (궤도구조를 고려한 철도교량의 동적거동 분석)

  • Kang, Duck-Man;An, Hea-Young;Sung, Deok-Yong;Kim, Sung-Il;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.55-65
    • /
    • 2009
  • This study is objected by analyzing whether it is applied to the analysis model considering the track stiffness or not when the railway bridge is designed or reviewed for the dynamic stability. It is performed that the analysis model is verified by comparing the field test result with the analysis result. Also, The dynamic response of railway bridge through the existing analysis model is compared with the analysis model considered the track stiffness. In addition, it is performed by analyzing the model considering the stiffness of concrete track. Therefore, this study is suggested that the design of railway bridge apply to the existing analysis model considering the mass of track and the dynamic stability review of railway bridge apply to it considered the stiffness & mass of track. Also, it is suggested that the stiffness of concrete slab on the bridge must consider when it is designed or checked over the dynamic stability.

  • PDF

Vehicle Stability Analysis using a Non-linear Simplified Model (비선형 단순 모델을 이용한 차량 안정성 해석)

  • Ko, Young-Eun;Song, Chul-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.29-37
    • /
    • 2008
  • Vehicle stability is a very important subject in vehicle design and control, because vehicle safety is closely dependent upon its dynamic stability. For the vehicle stability analysis, the nonlinear vehicle model of a mid-size car with three DOF - longitudinal, lateral and yaw - is employed. A rigorous method is used to determine the vehicle stability region in plane motion. An algorithm is used to materialize a topology theorem, which enables to find the exact stability region. A stability criterion for the critical cornering is proposed.

A Study on the Seismic Stability of an Existing Switchboard for Emergency Diesel Generator (비상 디젤발전기용 배전반의 내진안전성에 관한 연구)

  • Neung_Gyo Ha;Chae-Sil Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1341-1347
    • /
    • 2023
  • This study proposes to ensure the seismic stability of an existing switchboard for emergency diesel generator by applying mode analysis, static analysis and dynamic analysis. First, a three dimensional model for the swithboard was made with simplification for mode analysis. Next, The mode analysis for the finite element model of the existing switchboard was performed. The 1st natural frequency below 33 Hz, the seismic safety cutoff frequency, was calculated to be 21.943 Hz. Finally, based on the seismic stability theory, the von-Mises equivalent stresses derived by structural analysis and response spectrum analysis under the normal and faulted conditions were 74.179 MPa and 49.769 MPa, respectively. These are less than specified allowable stresses. So seismic stability was confirmed.