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Robust Stability Analysis for a Fuzzy Feedback
Linearization Method using a Takagi-Sugeno Fuzzy Model

Hyung-Jin Kang, Cheol Kwon, Hee-Jin Lee, and Mignon Park

Abstract

In this paper, robust stability analysis for the fuzzy feedback linearization regulator is presented. Well-known Takagi-Sugeno fuzzy

model is used as the MISO nonlinear plant model. Uncertainty and disturbances are assumed to be included in the model structure with

known bounds. For these structured uncertainty and disturbances, robust stability of the closed system is analyzed in both input-output

sense and Lyapunov sense. The robust stability conditions are proposed by using multivariable circle criterion and the relationship

between input-output stability and Lyapunov stability. The proposed stability analysis is illustrated by a simple example.

I. Intreduction

By the feedback linearization method, a class of nonlinear
plant can be transformed into a linear system model. Since the
transformed linear system model can be easily controlled by
well-known and powerful linear control methods, feedback
linearization has been widely used in nonlinear control theory[l,
2]. Also, similar design concept has been applied to fuzzy
control theory using a fuzzy modelf3-5].

A fuzzy model has excellent capability in nonlinear system
description and is particularly suitable for the complex and
uncertain system. Specially, Takagi-Sugeno fuzzy model can
represent a highly nonlinear dynamic system using a small number
of rules[6]. Based on Takagi-Sugeno fuzzy model, Sugeno[3]
proposed a basic scheme for the fuzzy feedback linearization
regulator. He assumed that perfect linearization could be obtained
and he analyzed the stability of the linearized system by linear
control theory. But, in practical situations, modeling uncertainty
and external disturbances are inevitably produced and perfect
linearization can not be achieved. Therefore, robust stability
analysis is needed to deal with uncertainty and disturbances.

In some previous literatures[7-9], circle criterion and modified
circle criterion were applied to analyze the nominal stability of
the fuzzy control systems. Also, Tanaka[10-12] suggested various
stability and robust stability analysis methods for the fuzzy
control systems based on Takagi-Sugeno fuzzy model. In this
paper, we have improved these previous researches and proposed
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robust stability analysis for the fuzzy feedback linearization
regulator based on Takagi-Sugeno fuzzy model. To analyze
robust stability, we assume that uncertainty and disturbances with
known bounds are included in the model structure. For these
structured uncertainty and disturbances, the robust stability of the
closed system is analyzed in input-output sense and Lyapunov
sense by applying multivariable circle criterion.

This paper is organized as follows : In section II, problem
formulation and a control scheme of the fuzzy feedback
linearization regulator are offered. Robust stability analysis for
the fuzzy feedback linearization regulator is proposed in section
M. In section IV, a simple example is presented to illustrates
the proposed analysis method. Finally, the conclusion of the
paper is presented in section V.

II. The Fuzzy Feedback Linearization
Regulator Based on T-S Fuzzy Model

Consider the regulation problem of the following n-th order
nonlinear SISO system

2 = fx) + g(x)u + d ()

where f and g are unknown (uncertain) but bounded conti-

‘nuous nonlinear functions and 4 denotes the external distur-

bance which is unknown but bounded. The external disturbances
are due to system load, = external noise, etc. Let
x=[xx, - ,x""P1T € R" be the state vector of the system
which is assumed to be available.

In this paper, well-known Takagi-Sugeno fuzzy model is used

to identify the unknown nonlinear system of Egn. (1). Takagi-
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Sugeno fuzzy model is available in IF-THEN form (2) or Input-
Output form (3). i

- [F-THEN form

plant rule i :

IF x is My and x is Mp and - and x7 is M,

THEN x"=( a;+ da;(t)7- x+(b;+4b;())u+d, ()
i=1,2,,7 ‘

where x=[x,x, -

b, Ab(HHeR

a9, ey, dai(heRV

In the expression of (2), M; is the fuzzy set and 1 is the
number of rules. Also, AJa;(¢) and 4b,(t) denotes the norm-

bounded time-varying modeling uncertainty.

_ + Input-Output form

S wl N a+ da, ()T 2+ (b+db,(¢))u)
x(ﬂ)= =1 7 +d
,2=lwi( x)

= Z;h,-(x)(( ai+ Aa; (1)) x+(b;+46:(t))u}+d3)

where w/( x)= TT M(xV™), h( x)=_M__
- 2wl x)
M(xY™Y) is the grade of membership of V™" in M, It is

assumed in this paper that

w(x) =20, i=1,2,,7
;lw,-(x) >0

i

Therefore,

h(x) =0, i=1,2,-,7

For Eqn. (3) to be controllable, Zi:,h"( z) b, = 0 for x in certain

controllability region U, C R" is required. If this contréllability
requirement is satisfied and there is no uncertainty in Eqn. (3)
( da;=0, 4b;=0, d=0), the following fuzzy feedback

linearization regulator of Eqn. (4) can cancel the nonlinearity of
Eqn. (3) and achieve perfect linearization of Eqn. (5).

—~

T ’ T
a - x — Zlh,(x) a;’ - x
&

’Z;:lh,( x)b;

T
T
(a - o) x

x)
IFFEI

1

M

hi

=1

@

where we use the same @;, &, and h( x) with the fuzzy model

of Eqn. (3) for all 7 and 2 € RY*" is the linear state feedback
gain vector. The perfectly linearized system can be written as

Eqn. (5).
= ZT- x )

In practical application, however, uncertainty and disturbances are
inevitable. Therefore, perfect linearization can not be achieved. By
substituting Eqn. (4) into Eqn. (3), the imperfectly linearized
system can be written as Eqn. (6). In the next section, robust
stability analysis for Eqn. (6) is presented.

x(n)= /a\T x4 Z::lhi( x) Aa,‘(t)T - X

>k )bt ~
+—= (3 h(x)(a— a;) x}+d
2 h(x)b T

e, x+(a2— a. )7 x+ _z;:lh,'(x) da;(t)7 - x

> () ab(t) .
A X h(x) (a-a) - x}+d

21}!{( x)b; !

= g - x + aN(t)T- x +d 6)

where, ay() = (a— a, )7 x+ Z;:lh;( x) da,()" - x

> h(2)ab(1) ~ 1
(X hx) (a— a;) - x)
a0

Remark : a; in Eqn. (6) denotes the reference vector for robust
stability analysis and a; should be chosen so as to satisfy the

following two conditions.

i) the asymptotic stability of ™= 4,7 - x.

ii) the basic assumption of Theorem 1 in the next section.

To implement the fuzzy feedback linearization regulator of
Eqn. (4) in the fuzzy rule-based form, we propose the control
structure shown in Fig. 1. We divide the fuzzy feedback lineari-
zation regulator into two blocks, a fuzzy rule-based controller
block and a simple nonlinear function block.

In the proposed structure, the fuzzy controller block shares the

same fuzzy sets M; and the parameters a; and b; with the fuzzy

model in the premise parts for all ; and j. Therefore, @ is the
only design parameter of the fuzzy feedback linearization
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Fig. 1. The control structure of the fuzzy feedback linearization
regulator.

regulator of Eqn. (4). The nonlinear function block simply
divides z, by u, to produce the same ¢ as in Egn. (4). i-th rule
of the fuzzy controller block can be represented by the following
expression of (7).

IF x is My and % is Mpand - and x"7V is M.,
u (a— a;)" x
THEN

U

M. Robust Stability Analysis for the Fuzzy
Feedback Linearization Regulator

To analyze the robust stability of Eqn. (6), consider two
different cases, i) d+0 ii) d=0. In case of i) d+0, tht; input-
output stability should be guaranteed so as to bound the norm of
the state vector x (output) with respect to the norm-bounded
disturbance 4 (input). In our analysis, well-known multivariable
circle criterion is used to analyze the input-output robust stability
of Egn. (6). Multivariable circle criterion is L, input-output

stability analysis tool for the linear system with sector bounded

nonlinearities [13-15]. Since ax(# in Eqn. (6) is bounded by the

maximum and the minimum obtained in Appendix A for all ;
and ¢, it can be treated as time-varying sector bounded non-
linearity. Therefore, multivariable circle criterion can be applied
to analyze L, robust stability of Eqn. (6). To apply multivari-
able circle criterion, the closed system of Eqn. (6) should be
transformed into the basic configuration of multivariable circle
criterion as in Fig. 2. In this basic configuration, the transfer
function matrix G(s) can be computed from Egn. (20) in
Appendix B. Applying multivariable circle criterion to the

transformed basic configuration, we have proposed a sufficient

condition for L, robust stability of the fuzzy feedback lineari-
zation regulator in Theorem 1. '

In case of i) 4=0, Lyapunov stability of the equilibrium
x=0 of Eqn. (6) is required with respect to the initial state x;.
From the nonlinear control theory, Lyapunov stability can be
related to the input-output stability as in Theorem 2. Therefore,
we can derive Lyapunov stability condition for 4=0 using
Theorem 1 and the relationship between the input-output stability
and Lyapunov stability. In Theerem 3, Lyapunov stability condition
for d=0 is proposed.

aNn(t) W

n

————D>
t
‘__ﬁ aNz( ) W,
Z1

0
71 G(s) keOs——o

2

r4 \
n n

Fig. 2. Basic configuration for multivariable circle criterion.

Since the stability conditions for L, stability and Lyapunov

stability are identical, the following analysis procedure can be
commonly applied to analyze both L, stability and Lyapunov

stability.

- Procedure for robust stability analysis

Step 1. Select the linear stable reference a; so as to satisfy the
basic assumption of Theorem 1 and compute the transfer
function matrix G(s) from Eqn. (20). in Appendix B.

Step 2. From Eqn. (13) and Eqn. (14) in Appendix A, find the
maximum and minimum sector bounds of ay(¢) for all ;.

Step 3. Plot Gershigorin bands for all ; using the transfer func-
tion matrix G(s) and the sector bounds.

Step 4. Check if the sufficient condition of Theorem 1 or

Theorem 3 is met.

Theorem 1. L, robust stability condition for the fuzzy feed-

back linearization regulator.

basic assumption : max{a()}= min{ay(H}=0, VJ

L, robust stability of the overall system is guaranteed if
|G GaY+ggl—rGw)dry, Vi

or none of ‘Gershigorin bands enter and encircle the disc centered
at —g, with radius r; (Fig. 3).

where 7;(/60)= k_Zk*I_IG,-k(jw)l or k:le;*lek,-(jw)l

=1.

_ ] 1
£5=0.5( min(an(5) * max(an(D) )

_ 1 1
7g=0.5( min(apn(8) max(azw(t»)

Proof of the above theorem is the same as the proofs of
references [13-15] and hence omitted here.
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Fig. 3. Graphical analysis of multivariable circle criterion.
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Fig. 4. Relationships between input-output and Lyapunov stability.

Theorem 2. Relationships between input-output and Lyapunov
stability.

Consider the following system of Eqn. (8)
. x(8)=Ax(t)+ Be(t), y(t)= Cx(t), e(t)= u(t)—®t y())8)
where  x(f)eR”", u(t)eR™ y(t)eR', and A, B, C are
matrices of compatible dimensions and @: R, x R’ — R™ satisfies

oL 0)=0, V=0 (Fig. 4).

if the following three conditions i), ii) and iii) are satisfied,
then x=0 is a globally attractive equilibrium of the unforced

system.

i) @ is globally Lipschitz continuous; i.e., there exists a finite
constant z such that
I ot y) =0t 3) 1| < ull yi—y,ll, Vi20, Vy, yeR
ii) the pair (4, B) is controllable, and the pair (C, A) is
observable.

iii) the forced system is L, stable.

Proof of this theorem can .be found in reference [16]
(Theorem (46))

Theorem 3. Lyapunov robust stability condition for the fuzzy
feedback linearization regulator.

x=0 is a globally attractive equilibrium of the unforced
system of Eqn. (6) ( ie. d=0) if

1G; Gw)+g l—rGw)dry, Vi
or none of Gershigorin bands enter and encircle the disc
centered at —g; with radius r; (Fig. 3).

where 7;(jw)=

=z:: |Gy (jw)l or =$ _|ij(f0))|

k=1, k*j k=1, k¥j

5= 0.5 (@) T max (an(D) )

_ 1
75=0.5( minlan(d) max(llzvj(l)))

proof : To prove Theorem 3, first, we express the system of
Eqn. (6) in the form of Eqn. (8) as in Eqn. (9).

2(t)=Ax(t)+ Be(t), y(t)= Cx(t), elt)= u(t)—0Lt, y(¢)1(9)

where A, B, C are A;, B;, C. in Appendix B, respectively.

and
0 ] am() 0 6 - 0
0 0 aw(® 0 - 0
u= 0 ,@ = A}v(t)z 0 0 (l/\{;(t) 0
-d 0 0 0 CZN,,(f)

Then, for the system of Eqn. (9), we examine three sufficient
conditions of Theorem 2.

a) Since ay(#) is bounded for all ; and ¢, we can’ assume
that || ApD || < u for all ¢
where p is a finite constant.
With this assumption and the property of the induced matrix
norm, the following inequality holds for all ;>0 and for all

y1, Yz-

W AMDy =AM 22l =1 ALD (yi—3) I < || ApD) ||

| vi—=»ll < a2l yy—9 1l

Therefore, the system of Eqn. (9) is globally Lipschitz
continuous.

b) The controllability and observability test shows that the pair
(A, B) is controllable and the pair(C, A) is observable,

independent of q.

c) If the sufficient condition of Theorem 1 is met, the forced
system ( ie.d+0 ) is L, stable.

a) and b) show that the system of Eqn. (9) always satisfies
the sufficient conditions i) and ii) of Theorem 2. Therefore,
according to ¢), if the sufficient condition of Theorem 1 is met,

x=1{) is a globally atiractive equilibrium of the unforced system
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of Eqn. (6) ( i.e.d=0 ).
IV. Example

Consider the stability of the following Takagi-Sugeno fuzzy
model with two rules. Membership functions of this fuzzy model
are shown in Fig. 5.

Rule 1 : IF x is about 0
THEN x=( ay+ da; (1))T x+(b,+486,(t))u+d

Rule 2« IF x is about +Z (|x|<§)

THEN x=( a»+ da,($))7+ %+ (by+ by (£)) u+d(10)

or
22: wl X a;+ Ada; ()T x+(b;+b;(1))u}
x=—= 2 +d
I.2=lu'i( x)
= SR art 2a ()T x4 (5, +2b()u) +d (D)
where ui( x)= ﬁ M(xV™D), hl )= 2w,-( x)
=1 ,Z=:1w’( x)

where x=|x, £ 17, a= [20, 0], a,=[10, 0], b= -2, b= -1
we assume that da, (¢), da, (1), 4b(t), Aby(1) are unknown

but bounded as follows.

-2 Sdﬂ“(t) SZ, -1 Sdalg(t) Sl, -2 degl(t) SZ,
-1 <daxn(t) <1, 001 <4b,(¢) <001, 001 <db,(¢) <001

In this example, the folléwing fuzzy feedback linearization
regulator of Eqn. (12) is used to stabilize the system of Eqn.

(10) or Eqn. (11)

2 2 ~T
'a\T-z—Zh,(x) a” x Shix)la ~ a ) x
u= = o= ; 12)
Elh,( x)b; :Zlh'( x)b;

where @ = [-50 ,-30]

Y 72\\

Rule 1

0 " -
-90 0 (degree) 90

Fig. 5. Membership functions.
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Fig. 6. Gershigorin band and disk (j=1).
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Fig. 7. Gershigorin band and disk (j=2).

According to the analysis procedure, L, stability (in case of
d+() and Lyapunov stability (in case of d=0) of the closed
system can be analyzed in the following steps.

Step 1. Select a; = [-100, -100]. We can easily verify that this
g, satisfies two conditions in Remark.

Then, compute the G(s) as

_ -1 11
G =" 0055100 L s s

Step 2. The maximum and minimum sector bounds of ax(¢)

for j=1, 2. can be found as follows.
MEX (1) =53.04, ™I an(2)=16.96

M o(1)=T162, ™I an(1) =68.38

Step 3. Gershigorin bands and the sector disks are given in Fig.
6 and Fig. 7.
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Fig. 8. State variable x(case d+0).
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Fig. 9. State variable x (case d+0).

Step 4. Since the sufficient condition of Theorem 1 and Theorem
3 are met, the fuzzy feedback linearization regulator of
Eqn. (11) can stabilize the system of Eqn. (9) or Egn.
(10) in L, sense (in case of g+0) and the Lyapunov

sense (in case of d=0).

To verify the stability analysis, the computer simulation is
performed for the case @+(0 and case d=0.

i) case d#0

In this simulation, random signal 4 (mean(d)=0, |d [<1)
is used as external disturbance and initial conditions are assumed
to be zero( x,= 0). Fig. 8. and Fig. 9. illustrate the simulation

Tesults.

i) case =0

J=0 and initial condition xg=[1, 0 ] are used for simulation.

15 1 @ T
X : ; H i :
1
05F-\
\,
0
0.5
-1
T B % i ~;
1 2 3 4 5 [ 7 | 9 10
Time (second)

Fig. 10. State variable x({case d=0).

i

3 4 5 B 7 ] g 10
Time {second)

Fig. 11. State variable x (case d=0).

Fig. 10. and Fig. 11. illustrate the simulation results.
V. Conclusion

In this paper, we have presented the robust stability analysis
method for the fuzzy feedback linearization regulator based on
Takagi-Sugeno fuzzy model. Both input-output stability and
Lyapunov stability can be analyzed by the proposed analysis
method. :

Compared with the previous‘researches on the similar topics,
our paper has something to do with Ray’s works [7-8]. Ray
introduced circle criterion and modified circle criterion to
analyze the stability of the fuzzy control system. However, the
fuzzy controller used in 'his works was nothing but a simple
SISO nomnlinear function in the early stage of fuzzy control
theory. In addition, he failed to treat uncertainty and nonlinearity
of the plant by using the nominal and linear plant model. But,
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in our paper, we have thoroughly dealt with the essential and
practical issues of current fuzzy control theory such as robust-
ness, complex nonlinear modeling and nonlinear cancellation.

In his previous works [10-12], Tanaka also treated these issues
in an excellent way but there are some differences and disadvan-
tages in comparison with our method. The controller structure
‘PDC(parallel distributed compensation)’ which is suggested in
Tanaka’s papers, can linearize the nonlinear plant only in the
small subset of the state space. In the remainder part of the state
space, interpolation or ‘fuzzy blending’ is used to generate the
controller output. On the other hand, our fuzzy feedback lineari-
zation regulator has the controller structure that can linearize the
whole state space. Therefore, our controller outperforms Tanaka’s
PDC in the aspect of the performance robustness to nonlinearity
of the plant. Besides, different from Tanaka’s method, our stability
analysis method is a graphical analysis method. Therefore, the
stability margins of the design parameters can be visualized in
Geréhigon'n plots. With the help of these stability margins, a
robust stable fuzzy feedback linearization regulator can be- easily
designed without repetitive and tedious trial and emor as in PDC.

A simple example illustrates the effectiveness of the proposed
stability analysis method. Further works are still under investiga-
tion to apply the proposed method to the more general nonlinear
systems, ¢. g., multivariable nonlinear and output feedback control

case.
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Appendix A

- A computing method for maximum and minimum sector
bounds ‘

basic assumption : Z::‘h,(x(t))=l m:x hr{x(H)=1

The maximum and minimum sector bounds of a,;(¢) can be

computed from Egn. (13) and Eqn. (14)

T (@M= (G—a)+ T { glh,»(x(z))da,-,-(»} (13)
> hx(D)dbD
+ m?X —ﬂ;—————— . 2 h{(x(t))d,'}'
X hx(s
M (4(0) = (G=ar)+ P { 3 h(x(0)da (0] (14)
i | B AR,
g mnyg_ = izzjlh,-(x(t))d,,

SR ET)N

where ¢;= a;,—a;

The second terms of Eqn. (13) and Eqn. (14) can be
computed using the following property.



JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 4, 1997 35

mli.n (Aaij(t))s glh;(x(t))da;,(t))s m’?x (Aaij(t)) (15)

The third terms of Eqn. (13) and Egn. (14) can be computed
from Eqn. (16) and Egn. (17)

X (Db
B 3 ()| =
,_Z:IIh,-(x(t))b,- =
T | R |
maX{T'e/, b:ﬂ'fj_' b_L) & (16)
I | R | R |
b Al g, A A
| B,
I 3 (x(D)ey) =
2 hil2(D)b; =
L | . | Y )
min Z - e, ,1;; s e, b_" ‘e, b_n e;, (17)
Y | R | L |
p e Ty O T & T e

where, b'={ b;| 5;>0}
br={ b;] <0}
ef={e;le;20})
ei={ e;| e; <0}

< Zi:lh,»(x(t))b? <

R O

, _
g < 2zl < &
= X hlxd)e; < ¢

457 = B ((Ab (1) | 4 20 )

46" = “l‘.atx {(AbD) | AbLH <0}

a6 = " ((ab(D) | AbLD 20 )

ap= T ((4b0) | db(H <0 )

Appendix B

- A computing method for G(s)

To compute G(s) from Eqn. (6), we divide Eqn. (6) into the
linear and the nonlinear part as

T
x(n) - a;

cx = a0 x + 4 18)

Using the following state-space representation of (19), we can

compute G(s) from Egn. (20)
x= A;x + BLv (19)
z = Crx
v= —w+d
w = AxD z
where,
0 1 0 0 0 0 0 0 ]
0 0 1 0 0 0 0 0
A= 0 0 0 1|, Bi.={ 0 0 O 0 |,
ap ap ﬂ.m AT -1 -1 -ll e —1
100 - 0]
010 -0
Cr=1}100 1 e 0
000 ~ 1
an(® 0 0 - 0 0
0 ap®» 0 - 0 0
A)=] 0 0 aw® -~ 0 |[and d= |0
0 0 0 - an® “d
G(s)= CL(sI-AL)7'B, (20)
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