<학술논문>

DOI http://dx.doi.org/10.3795/KSME-A.2012.36.11.1319

ISSN 1226-4873

구동력을 고려한 자전거 안정성에 관한 연구

서 병 일^{*†}

* 동양대학교 철도차량학과

Study of Effect of Tractive Force on Bicycle Self-Stability

Byungyil Souh^{*†}

* Dept. of Railway Vehicle, Dongyang Univ.

(Received May 17, 2012 ; Revised August 9, 2012 ; Accepted August 10, 2012)

Key Words: Bicycle Dynamics(자전거동역학), Bicycle Stability(자전거 안정성), Multi-Body Dynamics(다물체동 역학)

초록: 본 논문은 구동력이 자전거의 self-stability 에 미치는 영향을 해석한다. 운전자의 제어를 고려하지 않는 자전거의 self-stability 는 자전거의 선형 모델로부터 고유치를 구하여 해석 할 수 있다. 전륜과 후륜 에 작용하는 자전거 구동력을 고려한 선형모델을 개발하고 이로부터 구동력이 안정성에 미치는 영향을 규명하였다. 선형모델의 결과가 다물체 동역학 모델의 시뮬레이션을 통한 비선형 자전거 모델에서도 같 은 결과를 보임을 확인하였다.

Abstract: This study focuses on the influence of tractive forces on the self-stability of a bicycle. The eigen-value analysis of the self-stability of a passive rider control linear bicycle model can be used to analyze the self-stability. A linear bicycle model with front and rear driving forces is developed. The influence of tractive forces on the self-stability is identified by using the developed model. A nonlinear multi-body bicycle model is used to confirm the results of the linear analysis.

1. 서 론

근래에 자전거는 건강과 환경을 위하여 장려되 고 있다. 자전거가 운동이나 여가용 이외의 교통 수단이 되기 위하여 보조 동력이 필요하고 이러한 보조 동력이 있는 자전거로 전기모터를 장착한 전 기자전거가 유망하다. 전기자전거는 구동력을 후 륜에 줄 수 있고 전륜에 줄 수도 있다. 이러한 구 동력은 자전거의 안정성에 영향을 미치며 이를 밝 히고자 한다

자전거는 일정 속도범위에서는 자전거 자체의 안정성(self-stability)을 가지고 있으며 자전거의 운 전자는 피드백 제어를 통하여 더 넓은 속도범위에 서 자전거를 안정된 상태로 유지 할 수 있다.

자전거의 안정성 판단은 자전거와 운전자를 포 함하는 경우 이론적인 해석이 어려우므로 운전자 의 제어가 없는 자전거 자체의 안정성을 판단하는 것에 목표를 둔다.

자전거 동적 거동은 19 세기 말경 현대의 자전 거와 유사한 자전거가 개발된 이후 여러 논문이 발표되었다. 자전거 안정성을 포함하는 자전거 과 학에 관한 단행본이 있으며⁽¹⁾ 실험적으로 자이로 스코픽 효과와 트레일(trail)의 효과를 규명하고 조 향휠 경사의 효과를 위치에너지 변화로 설명한 연 구,⁽²⁾ 선형방정식 유도와 안정성 해석연구,^(3,4) 자동 제어 이론과 역 단진자 모델을 이용한 롤 안정성 에 대한 연구,⁽⁵⁾ 안정성에 대한 리뷰와 여러 동역 학 모델의 비교를 통한 선형 방정식을 제안한 연 구⁽⁶⁾ 등이 있다.

이러한 연구 중 전, 후륜의 견인력이 안정성에 미치는 영향에 관한 연구가 없으며 이를 규명하고 자 한다.

2. 자전거 운동 방정식

장체 운동하는 자전거 운동방정식은 기구학적 폐 루프를 포함하는 비선형 방정식으로 제한식에

[†] Corresponding Author, bys@dyu.ac.kr

^{© 2012} The Korean Society of Mechanical Engineers

의한 종속변수를 해석적으로 독립변수로 바꾸는 일반적인 방법이 없으며 따라서 독립변수의 미분 방정식으로 표시된 자전거 운동방정식은 발표된 결과가 없다.⁽⁶⁾ 따라서 작은 각변위를 가정한 선형 미분 방정식을 유도하여 동적 거동을 해석한다.

자전거는 Fig. 1 에 표시된 것과 같이 전륜, 조향 휠 조립체, 후륜, 후륜 조립체와 이에 고정된 운전 자로 이루어 지며 이들은 이상적인 회전 조인트로 연결된 것으로 가정한다. 바퀴는 이상적인 구름 조인트로 노면과 연결된다. 구름 조인트는 Nonholonomic 시스템으로 자전거 전체 자유도는 7 이 다.⁽⁶⁾ 조향각이 없으며 수직으로 선 기준위치로부 터 작은 롤 각 변위와 작은 조향각 변위가 있을 때 자전거 운동방정식은 선형 방정식으로 표시할 수 있다.

안정성을 판단하기 위한 운동방정식은 작은 각 변위를 가정하여 이상화하여 간단한 운동방정식으 로 유도한다. 이상화를 위한 가정으로 바퀴는 이 상적인 구름 운동하는 폭이 없는 디스크로 간주하 고, 사람은 차체에 고정된 것으로 간주한다. 자전 거는 조인트의 감쇠를 무시하면 전체 에너지가 보 존되고 일정 속력을 유지한다. 바퀴에 작용하는 구동력은 같은 크기의 저항력을 무게 중심에 작용 하도록 하여 상쇄하여 구동력에 의한 가속이 없도 록 하여 등속도 가정을 만족하도록 한다.

일정속도의 자전거 안정성은 롤각, 조향각을 독 립변수로 한 운동방정식으로 나타낼 수 있다. 구 동력을 포함하는 운동방정식으로부터 자전거의 안 정성을 판단한다.

Jim Papadopoulos 는 뉴톤 방법을 이용하여 평형 위치로부터 작은 각 변위가 있는 자전거의 횡 방 향, 롤 방향, 요 방향, 조향축 방향 운동방정식을 유도하였고 이로부터 바퀴에 작용하는 반력을 소 거하여 안정성을 판단 할 수 있는 2 자유도의 롤

Fig. 1 Bicycle model and geometry

방향과 조향축 방향 운동방정식을 유도하였다.⁽⁴⁾ 유도된 선형운동방정식은 아래와 같이 정리된다.

$$\mathbf{M}\ddot{\mathbf{q}} + \mathbf{C}\dot{\mathbf{q}} + \mathbf{K}\mathbf{q} = \mathbf{Q} \tag{1}$$

여기서 M은 질량행열, C 속도에 비례하는 힘 을 만드는 행열, K 는 강성행열로 각각의 행열은 자전거 파라메터로 표시된다. Q는 외력이고 일반 화 좌표는 벡터로 $\mathbf{q} = \{\chi \ \phi\}^T$ 이다. χ , ϕ 는 Fig. 2 에서와 같이 롤 각, 조향각이다. 그림의 롤 각과 조향각의 방향은 반대 방향이다.

가속이 없는 등속 조건을 가정하고 이를 만족 시키기 위하여 구동력과 구동력을 상쇄하는 저항 력을 고려한다. 저항력은 후륜조립체 무게중심에 작용하는 것으로 가정한다. 구동축에 작용하는 구 동력과 저항력은 커플 모멘트로 작용하며 구동력 *F*와 구동 모멘트 *M* 관계는 아래와 같다.

$$M = Fh \tag{2}$$

여기서 *h*는 구동력과 저항력 작용선의 수직거 리이다.

이들 구동력과 저항력은 짝힘으로 자전거에 종 방향의 모멘트를 발생시키고 이는 전륜의 하중을 줄이고 후륜의 하중을 크게 한다. 하중이동 ΔN 과 구동 모멘트 사이 관계는 아래와 같다.

$$\Delta N = \frac{M}{c_w} \tag{3}$$

여기서 C_w 는 휠베이스(wheel base)로 전후 바퀴 접지점 사이의 거리이다.

후륜과 후륜 조립체는 롤 방향 각 변위가 있으 며 후륜 회전축의 구동 모멘트는 요, 피치 모멘트 로 분해할 수 있다. 미소 각변위를 가정하면 각 성분의 모멘트는 아래와 같다.

Fig. 2 Generalized coordinates

$$M_{pitch} = M_r \tag{4}$$

$$M_{yaw} = -M_r \chi \tag{5}$$

여기서 $M_{\rm r}$ 은 후륜구동 모멘트, $M_{\rm pitch}$ 는 피치 모멘트, $M_{\rm yaw}$ 는 요 모멘트이다. 피치 모멘트 는 전 후륜 사이의 하중이동을 일으킨다.

전륜 회전축에 작용하는 구동 모멘트 M_f 는 전륜 조립체의 롤 및 조향각 방향의 각 변위에 의 하여 롤, 요, 피치 모멘트의 세 방향의 모멘트로 분해 할 수 있다. 미소 각변위를 가정하면 각각의 모멘트는 아래와 같다.

$$M_{pitch} = M_f \tag{6}$$

$$M_{roll} = M_f \phi \, \cos \lambda \tag{7}$$

$$M_{yaw} = M_f (-\chi + \phi \sin \lambda) \tag{8}$$

여기서 M_{roll} 는 롤 모멘트이다. λ 는 조향축 경사각으로 수직으로부터 측정한다. 마찬가지로 피치 모멘트는 전 후륜 사이의 하중이동을 일으킨 다.

위의 각각의 구동력에 의한 모멘트를 Papadopoulos 의 4 자유도 운동방정식에 추가하여 조향각과 롤각 운동방정식으로 정리하면 추진력에 의한 효과를 포함하는 2 자유도 자전거 운동방정 식이 유도된다.

전륜 구동력을 포함하는 운동방정식은 아래와 같다.

$$\mathbf{M} \begin{cases} \ddot{\boldsymbol{\chi}} \\ \ddot{\boldsymbol{\phi}} \end{cases} + \mathbf{C} \begin{cases} \dot{\boldsymbol{\chi}} \\ \dot{\boldsymbol{\phi}} \end{cases} + \begin{bmatrix} \mathbf{k}_{\boldsymbol{\chi}\boldsymbol{\chi}} & \mathbf{k}_{\boldsymbol{\chi}\boldsymbol{\phi}} + \Delta \mathbf{k}_{\boldsymbol{\chi}\boldsymbol{\phi}} \\ \mathbf{k}_{\boldsymbol{\phi}\boldsymbol{\chi}} & \mathbf{k}_{\boldsymbol{\phi}\boldsymbol{\phi}} \end{bmatrix} \begin{cases} \boldsymbol{\chi} \\ \boldsymbol{\phi} \end{cases} = \begin{cases} \boldsymbol{M}_{\boldsymbol{\chi}} \\ \boldsymbol{M}_{\boldsymbol{\phi}} \end{cases}$$
(9)

여기서 전륜 구동력의 추가적인 효과는 아래와 같다.

$$\Delta k_{\chi\phi}\phi = -M_f (c_f / c_w)\phi - \cos\lambda M_f \phi \qquad (10)$$

여기서 c_f 는 미케니칼 트레일(mechanical trail) 로 조향축과 전륜 접지점 사이의 수직거리이다. 식 (10)의 첫 항은 하중이동에 의한 모멘트이고 두번째 항은 구동모멘트의 조향축 방향 성분이다. 후륜 구동력을 포함하는 운동방정식은

$$\mathbf{M} \begin{cases} \ddot{\boldsymbol{\chi}} \\ \ddot{\boldsymbol{\phi}} \end{cases} + \mathbf{C} \begin{cases} \dot{\boldsymbol{\chi}} \\ \dot{\boldsymbol{\phi}} \end{cases} + \begin{bmatrix} \mathbf{k}_{\boldsymbol{\chi}\boldsymbol{\chi}} & \mathbf{k}_{\boldsymbol{\chi}\boldsymbol{\phi}} + \Delta \mathbf{k}_{\boldsymbol{\chi}\boldsymbol{\phi}} \\ \mathbf{k}_{\boldsymbol{\phi}\boldsymbol{\chi}} & \mathbf{k}_{\boldsymbol{\phi}\boldsymbol{\phi}} + \Delta \mathbf{k}_{\boldsymbol{\phi}\boldsymbol{\phi}} \end{bmatrix} \begin{cases} \boldsymbol{\chi} \\ \boldsymbol{\phi} \end{cases} = \begin{cases} \boldsymbol{M}_{\boldsymbol{\chi}} \\ \boldsymbol{M}_{\boldsymbol{\phi}} \end{cases}$$
(11)

윗 식의 후륜 구동력의 추가적인 항은 아래와 같다.

$$\Delta k_{\chi\phi} = -M_r (c_f / c_w) \tag{12}$$

$$\Delta k_{\phi\phi} = M_r (c_f / c_w) \sin \lambda$$
⁽¹³⁾

구동력에 의한 하중 이동은 전륜 구동이나 후 륜 구동의 차이가 없다. 하중 이동에 의한 롤 모 멘트는 아래와 같다.

$$\Delta k_{\chi\phi}\phi = -M \left(c_f / c_w \right)\phi = -c_f \Delta N\phi \qquad (14)$$

식 (10)의 첫 항과 식 (14)는 하중이동과 조향에 의한 무게중심의 오프셋의 곱으로 발생되는 모멘 트이다.

전륜 구동에 의한 모멘트 식 (10)의 두 번째 항 은 전륜 구동모멘트의 롤 방향 성분으로 직접 롤 모멘트에 기여한다.

식 (13)의 후륜 구동력의 조향축 모멘트는

$$\Delta k_{\phi\phi}\phi = M_r (c_f / c_w) \sin \lambda \phi = \Delta N c_f \sin \lambda \phi (15)$$

위 항은 하중이동과 조향에 의한 무게중심의 오프셋의 곱으로 발생되는 모멘트의 조향축 방향 성분이다.

3. 자전거 안정성

외력이 없고 구동력과 저항력을 포함하는 선형 화된 자전거 운동방정식 (1)을 속력에 의존하는 항으로 정리하면 아래와 같이 표시된다.

$$\mathbf{M}\ddot{\mathbf{q}} + v\mathbf{C}_{1}\dot{\mathbf{q}} + \left[g\mathbf{K}_{o} + v^{2}\mathbf{K}_{2}\right]\mathbf{q} = \mathbf{0}$$
(16)

여기서 v는 자전거 속력이고 g는 중력가속도이 다. M, C₁, K_o, K₂ 행열은 자전거 파라메터의 조합으로 표시된다.

운동방정식의 해를 **q**=**q**_o*e*^{*λ*} 로 가정하면 아래 의 특성 방정식을 만족하여야 한다.

Parameter	Symbol	Value		
Wheel	c _w	1.02m		
Trail	с	0.08m		
Head angle	λ	π/10 rad		
Rear wheel				
Radius	R _{rw}	0.3m		
Mass	m _{rw}	2kg		
Moment of inertia	I _{rw}	(0.06,0.12,0.06)kg m ²		
Rear frame				
CG	x _{rf} ,y _{rf} ,z _{rf}	(0.3,0,0.9)m		
Mass	m _{rf}	85kg		
Moment of inertia	I_{rf}	$\begin{bmatrix} 9.2 & 0 & 2.4 \\ & 11 & 0 \\ & & 2.8 \end{bmatrix} \text{kg m}^2$		
Front frame				
CG	$x_{\rm ff}, y_{\rm ff}, z_{\rm ff}$	(0.9,0,0.7)m		
Mass	m _{ff}	4kg		
Moment of inertia	$\mathrm{I_{ff}}$	$\begin{bmatrix} .0589 & 0 &0076 \\ .06 & 0 \\0076 & .0071 \end{bmatrix} \text{kg m}^2$		
Front wheel				
Radius	R_{fw}	0.35m		
Mass	m _{fw}	3kg		
Moment of inertia	I_{fw}	(0.14,0.28,0.14)kg m ²		

 Table 1 Bicycle parameters

Mode	eigen value	eigen vector
Capsize	-0.6212	1.0000 -0.5088
Caster	-13.2986	1.0000 -203.7862
Weave	-0.3780 - 3.8728i	1.0000 -1.2012 - 0.3196i
Weave	-0.3780 + 3.8728i	1.0000 -1.2012 + 0.3196i

Table 2 Eigen values and eigen vectors, v=4.6m/s

Fig. 3 Linear bicycle model eigen values of caster, capsize, weave mode

운동과 조향 바퀴가 같은 방향이며 빠른 속력에서 는 불안정해지며 따라서 넘어지는 운동 모드이다. Weave 모드는 후륜 조립체의 롤운동에 따라 조향 바퀴는 작은 위상 차이를 갖고 감쇠 진동하는 운 동 모드이다.

Table 2 는 안정된 속도인 v=4.6m/s 에서 고유치 와 고유벡터이다. 모든 고유치가 음의 값을 갖는 안정된 구간의 속도 v=4.6m/s 인 경우에 대하여 고 유치와 고유벡터는 Caster 모드 고유치는 -13.3 로 매우 안정되고 고유벡터는 롤각과 조향각의 비로 -203.7 이다. 롤각 과 조향각의 비가 음의 값인 것 은 같은 방향으로 기울어 지는 방향이다. Capsize 모드 고유치는 -0.621 이고 이에 따른 고유벡터는 두 각도의 비로 -0.5088 이다.

Weave 모드 고유치는 -0.378±3.87√-1 이며 고유 벡터는 [1, -1.20±0.319√-1] 이다. 이는 감쇠 진동하 는 모드이고 감쇠고유진동수는 3.87 rad/s 이다. 주 기는 1.62 초로 아래 Fig. 4 의 시뮬레이션 결과에 서 주기가 확인된다.

Table 2 에서와 같이 weave 모드의 고유벡터는 복 소수로 나타나고 롤각과 조향각은 위상이 반대이

특성방정식을 만족하는 고유치는 속력에 따라 다

(17)

 $\det\left(\mathbf{M}\lambda^{2}+v\mathbf{C}_{1}\lambda+\left[g\mathbf{K}_{a}+v^{2}\mathbf{K}_{2}\right]\right)=0$

르고 각각의 고유치에 해당하는 고유벡터가 있다.

식 (17)을 이용하여 속력에 따른 고유치를 구한 다. 고유치의 실수부가 음의 값이면 안정하다고 판단한다.

Table 1 에 참고문헌⁽⁶⁾의 값을 인용한 자전거 파 라메터를 표시하였다.

Fig. 3 은 식 (17)을 이용하여 고유치를 구한 결 과이다. 실용적인 속도 범위에서 보통 형상의 자 전거는 caster 모드, capsize 모드, weave 모드 운동 을 한다. Caster 모드는 매우 안정된 운동모드로 차 체 운동방향과 조향 방향이 일치되는 모드이다. Capsize 모드는 자전거 후륜 조립체의 롤 방향

Mode	eigen value	eigen vector
Capsize	0.0266	1.0000 -0.2715
Caster	-16.4952	1.0000 245.1415
Weave	-1.6559 - 6.1463i	1.0000 -1.4295 - 0.0532i
Weave	-1.6559 + 6.1463i	1.0000 -1.4295 + 0.0532i

Table 3 Eigen values and eigen vectors, v=6.2m/s

Fig. 4 Bicycle roll and steer angle, v=4.6

다. 이는 롤각과 조향각 좌표계 설정에 의한 것으 로 같은 방향으로 기울어 지는 방향이다. 롤각과 비교하여 조향각은 위상각 0.260 rad 에 해당하는 0.06 초의 시간 지연이 있는 것으로 해석된다. 롤 각과 조향각의 크기의 비는 복소수 고유벡터의 크 기 비로 1.243 이다.

속력 v=6.2m/s 인 경우에 대하여 capsize 모드는 고유치가 양의 값으로 불안정한 영역이다. 고유치 와 고유벡터가 아래 Table 3 에 정리하였다. Caster 모드 고유치는 -16.49 로 매우 안정되고 고유벡터 는 roll 각과 steer 각도의 비로 245 로 계산된다. roll 과 steer 각의 비가 양의 값인 것은 반대 방향 으로 기울어 지는 방향이다.

Capsize 모드 고치는 0.0266 이고 이에 따른 고 유벡터는 두 각도의 비로 -0.271 이다. 이는 weave 운동이 감쇠된 후 롤각과 조향각의 비로 시뮬레이 션 결과인 아래 Fig. 5 에서 확인된다. 과도응답이 없어진 후 완만하게 롤각과 조향각이 증가되며 불 안정해 짐을 보인다. Weave 모드 고유치는 -1.6559 ± 6.1463i 이며 고유벡터는 -1.4295 ± 0.0532i 이다. 이는 감쇠 진동하는 모드이고 감쇠고유진동수는 6.15 rad/s 이다. 주기는 1.02 초로 아래 Fig. 4 의 시 뮬레이션 결과의 과도응답 영역에서 확인된다.

Fig. 5 Bicycle roll and steer angle, v=6.2m/s

Fig. 6 Bicycle eigen-values and tractive force

고유벡터는 복소수로 나타나고 롤각과 조향각은 위상이 반대이다. 롤각과 비교하여 조향각은 위상각 0.037 rad 에 해당하는 0.006 초의 시간 지연이 있는 것으로 해석된다. 롤각과 조향각의 크기의 비는 복 소수 고유벡터의 크기 비로 1.43 이고 이는 capsize 모드에 의한 정상상태의 롤각과 조향각을 고려하면 그림의 시뮬레이션 결과에서 확인된다.

구동력을 고려한 선형 모델에 대하여 속도에 따른 고유치를 구하면 아래 Fig. 6 와 같다. 구동력은 20N 으로 가정한다. 이는 두 속력 4.6m/s 과 6.2m/s 에 대 하여 각각 동력 92W 와 124W 에 해당하고 이는 보 통 수준의 자전거 운전자의 동력으로 간주할 수 있 는 수준이다.

속도와 고유치 관계인 Fig. 6 에서 구동력에 따 라 고유치가 달라짐을 볼 수 있다. Fig. 6 을 참고 하면 후륜 구동은 weave 고유치 음의 값을 크게 하여 안정성 높인다. 반대로 전륜 구동은 weave 안정성을 악화시킨다. 고유치 결과는 선형모델의 수치적분 결과와 Dymola 비선형 강체 모델의 결

일

Fig. 7 Linear model simulation, steering angle, v=4.6

Fig. 8 Linear model simulation, roll angle, v=4.6

Fig. 9 Linear model simulation, steering angle, v=6.2

과인 Fig. 7,8,13,14 에서 확인된다.

후륜 구동은 capsize 모드 고유치 음의 값을 작 게 하여 안정성 낮춘다. 반대로 전륜 구동은 capsize 안정성을 높인다. 고유치 결과는 선형모델 의 수치적분 결과와 Dymola 비선형 모델의 시뮬

Fig. 10 Linear model simulation, roll angle, v=6.2

Fig. 11 Dymola front wheel drive bicycle model

레이션 결과인 Fig. 7,8,13,14 에서 확인된다.

높은 속력에서 capsize 모드의 고유치는 양의 값 으로 부호가 바뀌게 되며 불안정하게 된다. 이는 Fig. 9, 10 에서 초기 과도응답이 없어진 후 롤각과 조향각의 진폭이 커지는 것으로 확인된다. 다물체 동역학 해석 기능의 Dymola⁽⁷⁾프로그램을 사용하여 본문 2 장의 이상화 된 자전거를 다물체 로 모델링 하였고 이를 이용하여 구동력의 효과를

Fig. 12 Dymola front wheel drive 3D model

Fig. 13 Dymola simulation, steering angle, v=4.6

Fig. 14 Dymola simulation, roll angle, v=4.6

시뮬레이션 하였다. Fig. 11 은 Dymola multbody package 를 이용한 자전거 모델이고 Fig. 12 는 삼 차원 animation 모델이다.

Fig. 13,14,15,16 는 Dymola 자전거 모델을 두 속 력에 대하여 시뮬레이션 한 결과 중 롤 각과 조향 각의 결과로 선형모델 시뮬에이션 결과와 유사하

Fig. 15 Dymola simulation, steering angle, v=6.2

Fig. 16 Dymola simulation, roll angle v=6.2

다. 롤 각은 시뮬레이션의 결과로 출력되지 않으 므로 출력된 변환 행열로 부터 구하였다.

4. 결론

구동력이 자전거 안정성에 미치는 영향을 판단 하기 위하여 구동력을 포함하는 자전거의 선형 운 동방정식을 유도하였다. 유도된 선형 운동방정식 을 이용하여 고유치와 고유벡터를 구하여 구동력 이 안정성에 미치는 영향을 검토하였다.

구동력의 영향을 포함하는 선형운동 방정식의 고유치 해석을 통한 이론적인 결과는 다물체 동역 학 해석 프로그램인 Dymola 를 이용하여 자전거 모델을 만들어 시뮬레이션으로 확인하였다.

보통의 자전거 형상과 안정된 속도 구간에서 후륜의 구동력은 weave 안정성을 높이고 capsize 안정성을 낮춘다. 전륜의 구동력은 weave 안정성 을 낮추고 capsize 안정성을 높인다.

참고문헌

- (1) Whitt, F. R. and Wilson, D. G., 2004, "Bicycling Science," MIT Press Cambridge, MA. Third Edition.
- (2) Jones, D. E. H., 1970, "The Stability of the Bicycle," Physics Today 23(3), pp. 34~40.
- (3) Sharp, R. S., 1971, "The Stability and Control of Motorcycle," J. Mech. Eng. Sci. 13, pp. 316~329.
- (4) Papadopoulos, J. M. 1987, "Bicycle Steering Dynamics and Self-Stability: A Summary Report on Work in Progress," Technical report, Cornell Bicycle

Research Project, Cornell University, Ithaca, NY

- (5) Astro^m, K. J., Klein, R. E. & Lennartsson, A., 2005, "Bicycle Dynamics and Control: Adapted Bicycles for Education and Research," *IEEE Control Syst. Mag.* 25, pp. 26~47.
- (6) Meijaard, J. P., Papadopoulos, J. M., Ruina, A. & Schwab, A. L. 2007, "Linearized Dynamics Equations for the Balance and Steer of a Bicycle: A Benchmark and Review," *Proc. R. Soc. A* 463, pp.1955~1982.
- (7) Dymola User Manual, 2009, Dynasim AB.