• Title/Summary/Keyword: Sst I

Search Result 70, Processing Time 0.023 seconds

CLINICAL AND NEUROPSYCHOLOGICAL CHARACTERISTICS OF DSM-IV SUBTYPES OF ATTENTION DEFICIT HYPERACTIVITY DISORDER (주의력결핍 과잉행동장애의 아형별 신경심리학적 특성 비교)

  • Cheung, Seung-Deuk;Lee, Jong-Bum;Kim, Jin-Sung;Seo, Wan-Seok;Bai, Dai-Seg;Chun, Eun-Jin;Suh, Hae-Sook
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.13 no.1
    • /
    • pp.139-152
    • /
    • 2002
  • Objectives:This study was conducted to compare the clinical and neuropsychological characteristics by DSM-IV subtypes of attention deficit hyperactivity disorder(ADHD) patients who did not have comorbid psychiatric disorders. Methods:5-15 year old children with ADHD were recruited at psychiatric outpatient clinic of Yeungnam University hospital and the patients with comorbidity or neurological abnormalities were excluded. Finally, total 404 children with ADHD were selected for this study. There were 234 subjects of ADHD-C(57.9%), 156 subjects of ADHD-I(38.6%) and 14 subjects of ADHD-HI(3.5%), who fulfilled the DSM-IV diagnostic criteria. The mean age of the total subjects was 9.63±2.49 years old. The psychopathology, IQ, behavioral problems, neuropsychological executive function were evaluated before pharmacological treatment. The measures were Korean Personality Inventory of Child(K-PIC) for psychopathology, 4 behavioral check lists(ADDES-HV, ACTeRS, CAP, SNAP) for behavioral symptoms of ADHD, K-ABC and KEDI-WISC for IQ and Conner's CPT, WCST, SST for neuropsychological executive functions. Results:1) The prevalence of subtypes was ADHD-C, ADHD-I, ADHD-HI in decreasing order. There was no sex difference of prevalence among three subtypes. The mean age of ADHD-I was older than other subtypes. 2) There was significant differences of psychopathology among subtypes, the ADHD-C and ADHD-HI had higher than the ADHD-I in the scores of delinquent, hyperactivity and psychosis;the ADHD-C had higher than the ADHD-I in the scores of family relation and autism, the scores of ego resilience were lower than the ADHD-I. However, there was no difference in anxiety, depression and somatization scores among them. 3) The results of behavioral symptom check lists, the ADHD-C had higher the score of inattention, hyperactivity and impulsivity than the ADHD-I. Meanwhile the results of ACTeRs, which rated by the teachers, were different. 4) There were significant differences of sequential processing scale and arithmetics among subtypes in IQ using K-ABC, but there was no significant difference between the ADHD-C and the ADHD-I after excluding the ADHD-HI due to small numbers. 5) There was numerical difference among subtypes but did not reach statistical significance in three neuropsychological executive function tests. Conclusion:In conclusion, our results revealed that there was significant difference in clinical features among three subtypes but, no significant difference in executive functions.

  • PDF

Ocean Color Monitoring of Coastal Environments in the Asian Waters

  • Tang, Danling;Kawamura, Hiroshi
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.154-159
    • /
    • 2002
  • Satellite remote sensing technology for ocean observation has evolved considerably in these last twenty years. Ocean color is one of the most important parameters of ocean satellite measurements. This paper describes a remote sensing of ocean color data project - Asian I-Lac Project; it also introduces several case studies using satellite images in the Asian waters. The Asian waters are related to about 30 Asian countries, representing about 60% of the world population. The project aims at generating long-term time series images (planned for 10 years from 1996 to 2006) by combining several ocean color satellite data, i.e., ADEOS-I OCTS and SeaWiFS, and some other sensors. Some typical parameters that could be measured include Chlorophyll- a (Chl-a), Colored Dissolved Organic Matter (CDOM), and Suspended Material (SSM). Reprocessed OCTS images display spatial variation of Chl-a, CDOM, and SSM in the Asian waters; a short term variability of phytoplankton blooms was observed in the Gulf of Oman in November 1996 by analyzing OCTS and NOAA sea surface temperature (SST); Chl-a concentrations derived from OCTS and SeaWiFS have also been evaluated in coastal areas of the Taiwan Strait, the Gulf of Thailand, the northeast Arabian Sea, and the Japan Sea. The data system provides scientists with capability of testing or developing ocean color algorithms, and transferring images for their research. We have also analyzed availability of OCTS images. The results demonstrate the potential of long-term time series of satellite ocean color data for research in marine biology, and ocean studies. The case studies show multiple applications of satellite images on monitoring of coastal environments in the Asian Waters.

Performance Enhancement of a Low Speed Axial Compressor Utilizing Simultaneous Tip Injection and Casing Treatment of Groove Type

  • Taghavi-Zenouz, Reza;Behbahani, Mohammad Hosein Ababaf
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 2017
  • Performance of a low speed axial compressor is enhanced through a proper configuration of blade row tip injection and casing treatment of groove type. Air injectors were mounted evenly spaced upstream of the blade row within the casing groove and were all aligned parallel to the compressor axis. The groove, which covers all the blade tip chord length, extends all-round the casing circumference. Method of investigation is based on solution of the unsteady form of the Navier-Stokes equations utilizing $k-{\omega}$ SST turbulence model. Extensive parametric studies have been carried out to explore effects of injectors' flow momentums and yaw angles on compressor performance, while being run at different throttle valve setting. Emphasis has been focused on situations near to stall condition. Unsteady numerical analyses for untreated casing and no-injection case for near stall condition provided to discover two well-known criteria for spike stall inception, i.e., blade leading edge spillage and trailing edge back-flow. Final results showed that with only 6 injectors mounted axially in the casing groove and at yaw angle of 15 degrees opposite the direction of the blade row rotation, with a total mass flow rate of only 0.5% of the compressor main flow, surprisingly, the stall margin improves by 15.5%.

System identification of a super high-rise building via a stochastic subspace approach

  • Faravelli, Lucia;Ubertini, Filippo;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.133-152
    • /
    • 2011
  • System identification is a fundamental step towards the application of structural health monitoring and damage detection techniques. On this respect, the development of evolved identification strategies is a priority for obtaining reliable and repeatable baseline modal parameters of an undamaged structure to be adopted as references for future structural health assessments. The paper presents the identification of the modal parameters of the Guangzhou New Television Tower, China, using a data-driven stochastic subspace identification (SSI-data) approach complemented with an appropriate automatic mode selection strategy which proved to be successful in previous literature studies. This well-known approach is based on a clustering technique which is adopted to discriminate structural modes from spurious noise ones. The method is applied to the acceleration measurements made available within the task I of the ANCRiSST benchmark problem, which cover 24 hours of continuous monitoring of the structural response under ambient excitation. These records are then subdivided into a convenient number of data sets and the variability of modal parameter estimates with ambient temperature and mean wind velocity are pointed out. Both 10 minutes and 1 hour long records are considered for this purpose. A comparison with finite element model predictions is finally carried out, using the structural matrices provided within the benchmark, in order to check that all the structural modes contained in the considered frequency interval are effectively identified via SSI-data.

MULTISPECTRAL REMOTE SENSING ALGORITHMS FOR PARTICULATE ORGANIC CARBON (POC) AND ITS TEMPORAL AND SPATIAL VARIATION

  • Son, Young-Baek;Wang, Meng-Hua;Gardner, Wilford D.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.450-453
    • /
    • 2006
  • Hydrographic data including particulate organic carbon (POC) from the Northeastern Gulf of Mexico (NEGOM) study were used along with remotely sensed data obtained from NASA's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) to develop POC algorithms to estimate POC concentration based on empirical and model-based principal component analysis (PCA) methods. In Case I and II waters empirical maximized simple ratio (MSR) and model-based PCA algorithms using full wavebands (blue, green and red wavelengths) provide more robust estimates of POC. The predicted POC concentrations matched well the spatial and seasonal distributions of POC measured in situ in the Gulf of Mexico. The ease in calculating the MSR algorithm compared to PCA analysis makes MSR the preferred algorithm for routine use. In order to determine the inter-annual variations of POC, MSR algorithms applied to calculate 100 monthly mean values of POC concentrations (September 1997-December 2005). The spatial and temporal variations of POC and sea surface temperature (SST) were analyzed with the empirical orthogonal function (EOF) method. POC estimates showed inter-annual variation in three different locations and may be affected by El $Ni{\tilde{n}}o/Southern$ Oscillation (ENSO) events.

  • PDF

The Influence of Meshing Strategies on the Propeller Simulation by CFD

  • Bahatmaka, Aldias;Kim, Dong-Joon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.78-85
    • /
    • 2018
  • This paper presents a study of the effects of the free surface to marine propeller including the mesh effect of the models. In the present study, we conduct the numerical simulation for propeller performance employing the openwater test. The numerical simulations compare the meshing strategies for the propeller and show the effects on both thrust and torque. OpenFOAM is applied to solve the propeller problem and then open water performances of KCS propeller (KP505) are estimated using a Reynold-averaged Navier-Stokes equations (RANS) solver and the turbulence of the $K-{\omega}$ SST model. Unstructured meshes are used in the numerical simulation employing hexahedral meshing for mesh generation. The arbitrary mesh interfacing (AMI) and multiple rotating frame (MRF) are compared to define the best meshing strategy. The meshing strategies are evaluated through 3 classifications, i.e., coarse, medium, and fine mesh. Thus, the propeller can be performed utilizing the best mesh strategy. The computational results are validated by comparison with the experimental results. The $K_T$, $K_Q$, and efficiency of the propeller are compared to an experimental result and for all of the meshing strategies. Thus, the simulations show the influence of meshing in order to perform the propeller performances.

NUMERICAL SIMULATIONS OF TWO DIMENSIONAL INCOMPRESSIBLE FLOWS USING ARTIFICIAL COMPRESSIBILITY METHOD (가상 압축성 기법을 이용한 이차원 비압축성 유동의 수치모사)

  • Lee, H.R.;Yoo, I.Y.;Kwak, E.K.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.389-396
    • /
    • 2010
  • In this paper, a new computational code was developed using Chorin's artificial compressibility method to solve the two-dimensional incompressible Navier-Stokes equations. In spatial derivatives, Roe's flux difference splitting was used for the inviscid flux, while central differencing was used for the viscous flux. Furthermore, AF-ADI with dual time stepping method was implemented for accurate unsteady computations. Two-equation turbulence models, Menter's $k-{\omega}$ SST model and Coakley's $q-{\omega}$ model, hae been adopted to solve high-Reynolds number flows. A number of numerical simulations were carried out for steady laminar and turbulent flow problems as well as unsteady flow problem. The code was verified and validated by comparing the results with other computational results and experimental results. The results of numerical simulations showed that the present developed code with the artificial compressibility method can be applied to slve steady and unsteady incompressible flows.

  • PDF

Development of chemical conversion coating technology by environment friendly method for Zn electroplated steel (아연 전기 도금 강의 환경친화적인 화성처리 기술 개발)

  • Kim, Seong-Jong;Kim, Jeong-Il;Jang, Seok-Ki
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.271-272
    • /
    • 2006
  • Zinc confers high corrosion resistance by acting as a sacrificial anode, and a zinc coating improves the appearance of steel. Chromate conversion coating (CCC) films are still one of the most efficient surface treatments for steel. Although such films can self-repair via the dissolution of Cr(VI), dissolved Cr(VI) have adverse effects on humans, and the environment. Therefore, we examined the corrosion protection property and morphology of colloidal silica conversion films as an alternative to CCC films. The corrosion behavior was investigated in 3% NaCl solution using electrochemical techniques, including electrochemical impedance spectroscopy, open circuit potential, and the salt spray test(SST). Corrosion was implied by the appearance of red rust on the specimen surface. In corrosion resistance at 3% NaCl solution, red rust appeared at 15-20, 55-70, and 83-98 days on Zn-electroplated steel, colloidal silica conversion-coated specimens, and CCC-coated specimens, respectively. In the salt spray test, the colloidal silica film provided better corrosion protection than CCC films, i.e., red rust appeared at 96 hours on the Zn-electroplated steel sheet, at 432 hours with the CCC films, and at 888 hours with silica conversion coating.

  • PDF

Design of Structure Corners restraining Tribological Failures: Part II - Analysis of Design Parameters and Examples (트라이볼로지 손상을 억제하기 위한 구조물 모서리부 설계: 제2부 - 설계인자 분석 및 예)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.170-176
    • /
    • 2015
  • As a continuation of Part I, which developed a design formula of the minimum corner radius (Rmin) for restraining tribological failures, Part II investigates design parameters such as material properties and contact force. As design examples, Al 7075-T651, SST 304 and HT-9 are chosen for the materials and 1, 10 and 100 kN are used for the forces. The results show that the difference in Rmin decreases as either the elastic modulus increases or the contact force decreases. Given the same material and force, the permissible Rmin decreases as the flat region increases and vice versa. Because the Rmin values obtained from the examples are very small, the dimensions of the corner radius normally designed in engineering structures are regarded acceptable. The von Mises stress evaluated for a typical example, which is far below the yield strength, confirms this interpretation. Nevertheless, the present work can provide a design criterion as well as a guideline for quality control in the manufacturing of, in particular, contact corners, which has not been attempted before to the best of the author’s knowledge. In addition, this paper considers the problem of a step that may be formed in the contact contour by using a similar approach. The result shows that no size of the step is permissible.

Analysis of Flow through High Pressure Bypass Valve in Power Plant (발전소용 고압 바이패스 밸브 내부 유동해석)

  • Cho, An-Tae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.17-23
    • /
    • 2007
  • In the present work, flow analysis has been performed in the steam turbine bypass control valve (single-path type) for two different cases i.e., case with steam only and case with both steam and water. The numerical analysis is performed by solving three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations. The shear stress transport (SST) model and $k-{\varepsilon}$ model are used to each different case as turbulence closure. Symmetry condition is applied at the mid plane of the valve while adiabatic condition is used at the outer wall of the cage. Grid independency test is performed to find the optimal number of grid points. The pressure and temperature distributions on the outer wall of the cage are analyzed. The mass flow rate at maximum plug opening condition is compared with the designed mass flow rate. The numerical analysis of multiphase mixing flow(liquid and vapor) is also performed to inspect liquid-vapor volume fraction of bypass valve. The result of volume fraction is useful to estimate both the safety and confidence of valve design.