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ABSTRACT

Hydrographic data including particulate organic carbon (POC) from the Northeastern Gulf of Mexico (NEGOM)
study were used along with remotely sensed data obtained from NASA’s Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) to develop POC algorithms to estimate POC concentration based on empirical and model-based principal
component analysis (PCA) methods. In Case I and 1l waters empirical maximized simple ratio (MSR) and model-based
PCA algorithms using full wavebands (blue, green and red wavelengths) provide more robust estimates of POC. The
predicted POC concentrations matched well the spatial and seasonal distributions of POC measured in situ in the Gulf
of Mexico. The ease in calculating the MSR algorithm compared to PCA analysis makes MSR the preferred algorithm
for routine use.

In order to determine the inter-annual variations of POC, MSR algorithms applied to calculate 100 monthly mean
values of POC concentrations (September 1997-December 2005). The spatial and temporal variations of POC and sea
surface temperature (SST) were analyzed with the empirical orthogonal function (EOF) method. POC estimates showed
inter-annual variation in three different locations and may be affected by El Nifio/Southern Oscillation (ENSO) events.
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INTRODUCTION

As we strive to better understand carbon cycling in
the ocean, it is important to be able to measure
particulate organic carbon (POC) as well as dissolved
organic and inorganic constituents effectively. POC
generally may be a small component of the total carbon,
but since POC can sink through the water column, it
plays an important role in sequestering carbon as part of
the biological pump. Studies such as the Joint Global
Ocean Flux Study (JGOFS), World Ocean Circulation
Experiment (WOCE), and South Atlantic Ventilation
Experiment (SAVE) have greatly expanded our
knowledge on many parameters of the carbon pool as
well as hydrography. Estimates of surface POC
concentration using SeaWiFS products and irn situ POC
measurements have also been made (Stramski et al.,
1999; Loisel et al., 2001; Mishonov et al., 2003;
Stramska and Stramski, 2005; Gardner et al., 2006) and
provide reasonable assessment of POC distribution on
regional to global scales. Some of these approaches used
single wavelengths instead of multiple spectral bands, but
a single wavelength method cannot account for the non-
linear response in optically complex environments. For
further progress we need to employ an empirical and
model-based approaches based on spectral remote
sensing data for more accurate POC estimates. It is
important for quantifying the time-varying evolution of

POC in surface waters to monitors, and eventually model,
the impact of climate change.

The purpose of this study is to develop accurate and
efficient POC algorithms based on satellite products; to
compare POC estimates with in situ measurements; to
investigate the advantages and disadvantages of various
POC algorithms; and to determine inter-annual variation
in temporal and spatial POC estimates based on ocean
color data and physical processes.

DATA AND METHODS

During the NEGOM project, data from approxi-
mately 100 CTD/transmissometer/fluorometer casts were
collected on each of nine seasonal cruises from
November 1997 to August 2000 along the same eleven
track lines normal to the coastline between mid-Florida
and the Mississippi River, starting from about 20m water
depth on the shelf and moving out to the 1,000m isobath
(Figure 1).

To estimate POC concentration, we compared ship-
board data with satellite-derived ocean color data
obtained synchronously. Data from SeaWiFS ocean color
data from November 1997 to August 2000 were obtained
from the NASA Goddard Space Flight Center DAAC

-(http://oceancolor.gsfc.nasa.gov/) and were generated

using SeaWiFS Data Analysis System (SeaDAS)
program. For comparing SeaWiFS and in-situ data,
values were extracted from 3x3 pixels box at each
NEGOM station location and averaged (Figure 1). The
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data were used to estimate the POC concentration using
an empirical (Son et al, submitted) and principal
component analysis (PCA) (Son, 2006).

In order to detect temporal and spatial patterns of a
large ocean color data set, empirical orthogonal function
(EOF) analysis was calculated with a monthly time-series
data of POC estimates and sea surface temperature (SST)
data during 100 months (September 1997 to December
2005).
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Figure 1. Bathymetry and sampling stations in the
Northeastern Gulf of Mexico (NEGOM) (11 sampling
transects with 60 POC sampling stations each).

RESULTS

Seasonal Patterns of POC

N1: Nov. 16-26, 1997

N2: May 5-16, 1998 N3: Jul 26-Aug. 6, 1998

Figure 2. Surface particulate organic carbon
concentration (mg'm~) contoured from bottle samples
collected at ~60 stations during each NEGOM
hydrographic cruise.

During the fall cruises (1997 - N1, 1998 - N4, and
1999 - N7), higher POC concentrations were generally
confined to the inner shelf. These concentrations
decreased across the outer shelf and the upper slope
(Figure 2). During the spring cruises (1998 - N2, 1999 -

N5, and 2000 - N8), most high POC concentrations
occurred between Mobile Bay and the Mississippi delta,
the area which receives high inputs from the Mississippi,
Pearl, and Tombigbee (Alabama) river (Figure 1 and 2).

Spatial distribution of POC concentration was
significantly different during summer seasons (1998 - N3,
1999 - N6, and 2000 - N9, Figure 2). Elevated surface
POC concentrations (> 300 mg'm-3) extended over the
upper slope across the study area. A wide swath of higher
than expected POC concentration was located across the
midsection of the region in a northwest-southeast
direction.

Empirical Approaches

In this study, measurements of the spectral radiance
upwelled from the ocean were used to estimate POC
concentration. The analysis was applied to spectral
radiance acquired at every POC station for the full
SeaWiFS spectral range of 410-670 nm, using 6
wavelengths (Figure 3). When the POC concentration in
the surface water increased, the radiance peak shifted
from the shorter wavelength (412 and 443 nm, violet-
blue) to longer wavelengths (555 nm, green) because
radiance from particles dominates the signal. Radiance at
510 nm remained relatively constant over a wide range of
POC concentrations (< 20 to > 550 mg'm™).
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Figure 3. Normalized water-leaving radiance versus
SeaWiFS wavelengths averaged over areas with different

binned POC concentrations (1-750 mg'm™).
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In the first approach we calculated a regression
between POC and chlorophyll concentrations using a
linear curve estimate that showed a fairly constant
relationship (R = 0.89, Eq.1 in Table 1). Low POC
concentrations have a close relationship with low
chlorophyll values, but the correlation is not as tight at
higher POC and chlorophyll concentrations. The
regression between POC and Kugp was moderate (R=0.88,
Eq.2 in Table 1), but it was less sensitive at higher POC
concentrations, where scatter also increases.

In the second approach using single wavelength
algorithms at 555 nm, Lwn or Rrs were well correlated at
low concentrations but scatter increased at higher POC
concentrations (R = 0.86, Eq.3 in Table 1). Lower POC
concentrations were well correlated with 555 nm using
algorithms of both Stramski et al. (1999) and Mishonov
et al. (2003), but at higher POC those algorithms have a
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lower correlation because they were developed with data
from open ocean where living as well as nonliving
organic terrigenous particles are less abundant.

In our third approach we tested several Rrs and Lwn
green-to-red/green  wavelength ratios (555/510 and
670/510, or 510/555 and 670/555) for correlations with
POC. Radiance at 510 and 555 nm were used as
normalizing factors because at those wavelengths there is
relatively minor variability in spectral absorption due to
particulate and dissolved substances. The green-to-
red/green ratio provided a statistically better estimate of
POC concentration (R=0.89, Eq.4 in Table 1) than the
blue-to-green ratio.

In our fourth approach a simple ratio (SR) was used
to determine the relationship using one green and one
blue wavelength and POC. SR values are directly (but
not linearly) proportional to POC concentrations (R=0.86,
Eq.5 in Table 1).

A fifth approach, the maximized simple ratio (MSR),
was based on the same concepts as the SR, but used all
blue-to-green wavelengths. To reduce the scatter of the
radiance signal, we used the 510 nm value as a
normalizing factor. In the shorter wavelengths, the
maximum radiance value among 412, 443, and 490 nm
was normalized by the value at 510 nm. In the green
wavelengths, peaks were consistently at 555 nm, so the
ratios using 555 nm to 510 nm were evaluated. MSR
values were directly (but not linearly) proportional to
POC concentrations. This method produced better results
than the first four approaches, especially when predicting
high POC concentrations (R=0.91, Eq.6 in Table 1).

Model-Based Approach (PCA)

The total variance (eigenvalue) calculated by the
PCA method. The first five modes accounted for 99.94%
of total variance. In examining individual eigenvectors,
the first eigenvector showed a peak at the shortest
wavelength measured — 412 nm. The peak in the second
eigenvector occurred at 555 nm, and the third
eigenvector peak was at 490 nm. The rest of the
eigenvectors had double peaks.

A least-squares fit of the principal component (PC)
values to POC concentrations using the multiple-linear
regression method showed that POC estimates (mg'm™)
were related to each principal component of the SeaWiFS
visible wavelengths (R=0.92, Eq.7 in Table 1). The first
three vectors demonstrate different weighting factors
with varying POC concentration. One, or a combination,
of the weighted eigenvalues reduced the noise levels
from an optically complex environment (Son, 2006).

POC Estimates in Case I and II Waters

The correlation between in situ POC and POC
estimates obtained from different algorithms evaluated in
this study is displayed in Figure 4. POC concentration
was under-estimated when based on SeaWiFS
chlorophyll pigment concentration (Eq. 1) and over-
estimated when based on SeaWiFS Kugo (Eq. 2). The

single-wavelength  radiance  (or  remote-sensing
reflectance) algorithm using 555 nm over-estimated low,
and under-estimated high POC concentrations (Eq. 3).
The simple ratio (Eq. 5) under-estimated high POC
concentrations compared to regressions based on
chlorophyll (Eq. 1) or green-to-red/green ratio algorithms
(Eq. 4). The MSR and PCA algorithms produced a very
good correlation between in situ POC and derived POC
values at all concentrations (Eq. 6 and Eq. 7).
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Figure 4. Comparison of in situ POC and predicted
POC concentration obtained using seven different
approaches. MSR and PCA approaches (eq.6 and eq.7)
employ full spectral radiance information and are well
correlated with a broad range of POC concentrations,
providing better estimates than single wavelength or
simple blue-to-green ratio approaches.
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Table 1. Least-squares fit of regression between
POC and SeaWiFS products.

Equation (mg'm” )| R RMSE

(1) POC = [000TRToa@l 2.05978) 0.89 0.182

2) POC = 100708, J¥585) 0.88 | 0.182

(3) POC = 1 0P TR 741 o 0.86 0.205
PO C = 1 0(2.1 55xlog(Lwn(555)) +2.505)

(4) POC = | (@55PR “0IPR _FITH) op 0.89 0.182

POC = 10294551 —0145L_ +2.205)
POC = 10(-2.823><R -0.14xR__+2.174) or
POC = 10(-2.808><L45 - 0.14><L65 +2.205)
(5) POC = 141 30 FRT8) o 0.86 | 0.189
POC = 142.29¢®Rmm22)
(6) POC =700.20<~MSRRrs’ + 1289.89<MSRRrs> + | 0.91 | 0.181
839.98xMSRRurs + 226.61 or
POC = 675.73xMSRLwn® + 1288.37xMSRLwn® +
864.15xMSRLwn + 235.07
(7) POC = -111.IxPC; + 342.2xPC, — 535.1xPCy + | 0.92 0.178
737.2xPCq — 770.9xPCs + 98.1
(chl is the chlorophyll concentration derived from the current SeaWiFS
chlorophyll algorithm (OC4v4), k490 is diffuse attenuation coefficient
at 490 nm, Ry (or Ly) is the log-transformed ratio of Rrs(d;) to Rrs(hy)
(Lwn(2y) to Lwn()) and the subscripts i and j are wavelengths (1-6)
that represented SeaWiFS wavebands 412(1), 443(2), 490(3), 510(4),
555(5), and 670(6) nm, SRRrs (SRLwn) is [(Rrs(555)-
Rrs(443))/(Rrs(555)+Rrs(443))]  or  ([(Lwn(555)-Lwn(443))/(Lwn
(555)+ Lwn(443))]), MSRRrs (MSRLwn) is [{Rrs(555)/Rrs(510)-
(Rrs(412)>Rrs(443)>Rrs(490))/Rrs(510) }/[ {Rrs(555)/Rrs(510)+(Rrs(4
12)>Rrs(443)>Rrs(490))/Res(510)}]  or  [{Lwn(555)/ Lwn(510)-
(Lwn(412)>Lwn(443)>Lwn(490))/Lwn(510) }/[ {Lwn(555)/Lwn(510)+(
Lwn(412)>Lwn(443)>Lwn(490))/Lwn(510)}], and PC;; s are the PC
of the first, second, ..., and fifth mode).

Spatial and Temporal Variations of POC using EOF
Analysis

Each EOF unit was interpreted considering
amplitude and spatial patterns as unit of information. A
given EOF pattern described a spatial pattern of residual
variance, which was modulated by its corresponding
time-varying amplitude. This provided spatial and
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temporal patterns and elucidated the relationship between
POC concentration and physical processes.

In Figure 5, the spatial SST and POC patterns in the
first modes revealed important climatic variability on
inter-annual timescale. The non-seasonal time-series
indicated that POC concentration was strongly affected
by the enhancement of large-scale processes. The low
frequency SST signal in Equatorial Pacific Ocean (Figure
5 e-f) showed El Nifio/Southern Oscillation (ENSO),
which is the most important coupled ocean-atmosphere
phenomenon to cause global climate variability on
interannual time scales. Variability between SST and
POC in Pacific Ocean are temporally and spatially
correlated with large-scale fluctuations and similar to
different locations (Korea and the Gulf of Mexico).
These remote effects of El Nifio are referred to as
teleconnections (McPhaden, 2002). During El Nino
events (1997-1998 and 2002-2004) POC showed
relatively positive amplitudes and relatively negative
values during La Nifia conditions (1999-2001). Time
series of POC and SST in Korea and the Gulf of Mexico
had 3-6 month lag times from ENSO signal. Temporal
and spatial surface POC concentrations may be strongly
affected by interannually varying the forces likely to
govern climate variability.
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: Flgure 5. First temporal mode of SST and POC for
EOF patterns and its time series in Korea (a-d), Nino3
region (e-h), and the Gulf of Mexico (i-1).

CONCLUSIONS

The classical approach for estimating upper ocean
parameters using remote sensing data is to develop
empirical and model-based algorithms. Using a large data
set that included in sitw measurements and satellite-
derived ocean color products, we tested simple empirical
and model-based approaches to derive POC
concentration.

Our analysis of the spectral response demonstrated
that the radiance was significantly dependent on POC
concentration or other water constituents, and that the
radiance peak shifted significantly from violet-blue

wavelength to green wavelength as POC concentration
increased. Based on this spectral dependence, several
approaches, including radiance ratios of different
wavelengths, were pursued to better estimate POC
concentrations. The approaches using multiple
wavelength radiances were more sensitive to these non-
linear conditions than using single wavelength radiance
or blue-to-green ratios, and provided reliable estimates
over a wide range of surface POC concentrations. In this
study, the best estimates for POC concentrations were
achieved with MSR algorithm.

To understand temporal and spatial relationships
between POC and impact of climate change, 100-month
satellite estimates of POC and SST were investigated.
These inter-annual differences of POC concentrations
over the study period were affected by one or more
physical factors related to ocean-atmospheric forcing
such as ENSO events.
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