• Title/Summary/Keyword: Squaring the Circle

Search Result 3, Processing Time 0.015 seconds

Squaring the Circle and Recognizing Right Triangles of Ancient Egyptians (고대 이집트인들의 원의 구적과 직각삼각형의 인식)

  • Park, Mingu;Park, Jeanam;Hong, Kyounghee
    • Journal for History of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.221-232
    • /
    • 2017
  • In this paper, we discuss how ancient Egyptians find out the area of the circle based on $\ll$Ahmose Papyrus$\gg$. Vogel and Engels studied the quadrature of the circle, one of the basic concepts of ancient Egyptian mathematics. We look closely at the interpretation based on the approximate right triangle of Robins and Shute. As circumstantial evidence for Robbins and Shute's hypothesis, Egyptians prior to the 12th dynasty considered the perception of a right triangle as examples of 'simultaneous equation', 'unit of length', 'unit of slope', 'Egyptian triple', and 'right triangles transfer to Greece'. Finally, we present a method to utilize the squaring the circle by ancient Egyptians interpreted by Robbins and Shute as the dynamic symmetry of Hambidge.

Squaring the Circle in Perspective (방원도의 투영)

  • Kim, Hong-Jong
    • Journal for History of Mathematics
    • /
    • v.27 no.6
    • /
    • pp.395-402
    • /
    • 2014
  • When the circle inscribed in a square is projected to a picture plane, one sees, in general, an ellipse in a convex quadrilateral. This ellipse is poorly described in the works of Alberti and Durer. There are one parameter family of ellipses inscribed in a convex quadrilateral. Among them only one ellipse is the perspective image of the circle inscribed in the square. We call this ellipse "the projected ellipse." One can easily find the four tangential points of the projected ellipse and the quadrilateral. Then we show how to find the center of the projected ellipse. Finally, we describe a pair of conjugate vectors for the projected ellipse, which finishes the construction of the desired ellipse. Using this algorithm, one can draw the perspective image of the squared-circle tiling.

History of Transcendental numbers and Open Problems (초월수의 역사와 미해결 문제)

  • Park, Choon-Sung;Ahn, Soo-Yeop
    • Journal for History of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.57-73
    • /
    • 2010
  • Transcendental numbers are important in the history of mathematics because their study provided that circle squaring, one of the geometric problems of antiquity that had baffled mathematicians for more than 2000 years was insoluble. Liouville established in 1844 that transcendental numbers exist. In 1874, Cantor published his first proof of the existence of transcendentals in article [10]. Louville's theorem basically can be used to prove the existence of Transcendental number as well as produce a class of transcendental numbers. The number e was proved to be transcendental by Hermite in 1873, and $\pi$ by Lindemann in 1882. In 1934, Gelfond published a complete solution to the entire seventh problem of Hilbert. Within six weeks, Schneider found another independent solution. In 1966, A. Baker established the generalization of the Gelfond-Schneider theorem. He proved that any non-vanishing linear combination of logarithms of algebraic numbers with algebraic coefficients is transcendental. This study aims to examine the concept and development of transcendental numbers and to present students with its open problems promoting a research on it any further.