• Title/Summary/Keyword: Sputtering simulation

Search Result 79, Processing Time 0.032 seconds

Metal Oxide Multi-Layer Color Glass by Radio Frequency Magnetron Sputtering for Building Integrated Photovoltaic System (RF Magnetron 스퍼터링 공정을 이용한 BIPV용 산화 금속 다중층 컬러 유리 구현 기술 연구)

  • Gasonoo, Akpeko;Ahn, Hyeon-Sik;Kim, Min-Hoi;Lee, Jae-Hyun;Choi, Yoon-seuk
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1056-1061
    • /
    • 2018
  • In this study, we propose the structure of color glass for BIPV (Building Integrated Photovoltaic System) and develop process technology to realize it. It was verified through computer simulation based on wave optics that two different kinds of metal oxide thin films with different refractive indices could be integrated to realize different colors with good transmittance. To fabricate the structure, we used RF Magnetron deposition method to achieve the target thickness uniformly. The optical analysis of the samples was carried our by comparing with the results of computer simulations and it was found that this technique can be stably implemented on lab scale. The stability test over weeks was confirmed at room temperature. This method is expected to be very useful in BIPV buildings.

용량 결합형 플라즈마의 유전체기판의 잔류전위 양상 관찰

  • Yun, Yong-Su;Wi, Seong-Seok;Kim, Dong-Hyeon;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.130-130
    • /
    • 2015
  • 플라즈마를 이용한 cleaning, etching, sputtering 공정에서 발생하는 마이크로아크방전이나 turn-off후의 잔류정전기는 공정대상물의 절연파괴나 전자소자에 전기적 손상을 유발함으로서 공정의 불량률을 증가시키는 중요한 요인이 된다. 본 연구에서는 잔류정전기를 관찰하기위하여 실린더형 챔버구조의 평행평판 전극구조를 지닌 용량결합형 플라즈마에서 powered electrode에 부착된 유전체 기판 표면의 잔류 정전기의 변화 양상을 planar type probe로 측정해보았다. 300mtorr 압력에서 아르곤가스로 발생시킨 플라즈마가 존재할 때 낮은 음전위 평균값을 가지던 기판표면 전위가 전력인가가 중지되었을때 20V 가량의 양전위를 가질 수 있음을 측정 하였고, 이것을 COMSOL MULTIPHYSICS TOOL을 활용한 시뮬레이션과 비교하였다. 이 현상이 파워인가 전극이 플라즈마 영역에 노출되느냐에 따라 발생할 수 있음을 알게 되었고, 그 크기와 지속시간은 입력전력 및 블로킹 커패시터와 유전체 기판의 정전용량에 의존함을 확인 하였다.

  • PDF

Electro-Thermal Characteristics of Hole-type Phase Change Memory (Hole 구조 상변화 메모리의 전기 및 열 특성)

  • Choi, Hong-Kyw;Jang, Nak-Won;Kim, Hong-Seung;Lee, Seong-Hwan;Yi, Dong-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.131-137
    • /
    • 2009
  • In this paper, we have manufactured hole type PRAM unit cell using phase change material $Ge_2Sb_2Te_5$. The phase change material $Ge_2Sb_2Te_5$ was deposited on hole of 500 nm size using sputtering method. Reset current of PRAM unit cell was confirmed by measuring R-V characteristic curve. Reset current of manufactured hole type PRAM unit cell is 15 mA, 100 ns. And electro and thermal characteristics of hole type PRAM unit cell were analyzed by 3-D finite element analysis. From simulation temperature of PRAM unit cell was $705^{\circ}C$.

Numerical Modeling of an Inductively Coupled Plasma Sputter Sublimation Deposition System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.23 no.4
    • /
    • pp.179-186
    • /
    • 2014
  • Fluid model based numerical simulation was carried out for an inductively coupled plasma assisted sputter deposition system. Power absorption, electron temperature and density distribution was modeled with drift diffusion approximation. Effect of an electrically conducting substrate was analyzed and showed confined plasma below the substrate. Part of the plasma was leaked around the substrate edge. Comparison between the quasi-neutrality based compact model and Poisson equation resolved model showed more broadened profile in inductively coupled plasma power absorption than quasi-neutrality case, but very similar Ar ion number density profile. Electric potential was calculated to be in the range of 50 V between a Cr rod source and a conductive substrate. A new model including Cr sputtering by Ar+was developed and used in simulating Cr deposition process. Cr was modeled to be ionized by direct electron impact and showed narrower distribution than Ar ions.

Simulation and Fabrication of One-Dimensional Magnetophotonic Crystals (1차원 자성 포토닉 결정의 설계 및 제조)

  • ;;;;M. Inoue
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.182-183
    • /
    • 2000
  • 유전체 층으로 SiO$_2$와 Ta$_2$O$_{5}$ , 자성층으로 Bi:YIG를 가지는 구조 (SiO$_2$/Ta$_2$O$_{5}$ )$_{5}$ /Bi:YIG/(Ta$_2$O$_{5}$ /SiO$_2$)$_{5}$ 의 1차원 자성 포토닉 결정의 광학적 및 자기광학적 특성을 수치해석을 통하여 계산하고$^{(2)}$ , 이를 바탕으로 1차원 자성 포토닉 결정을 RF magnetron sputtering과 rapid thermal annealing 방법을 이용하여 제작하였다.$^{(1)}$ 제조된 자성 포토닉 결정은 선명한 포토닉 밴드갭을 보였고, 원하는 파장에서 큰 페러데이 회전각과 투과율이 얻어졌다. (중략)

  • PDF

Effect of SiO2/ITO Film on Energy Conversion Efficiency of Dye-sensitized Solar Cells

  • Woo, Jong-Su;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.303-307
    • /
    • 2015
  • Multilayered films of ITO (In2O3:SnO2 = 9:1)/SiO2 were deposited on soda-lime glass by RF/DC magnetron sputtering at 500℃ to improve the energy conversion efficiency of dye-sensitized solar cells (DSSCs). The light absorption of the dye was improved by decrease in light reflectance from the surface of the DSSCs by using an ITO film. In order to estimate the optical characteristics and compare them with experimental results, a simulation program named EMP (essential macleod program) was used. EMP results revealed that the multilayered thin films showed high transmittance (approximate average transmittance of 79%) by adjusting the SiO2 layer thickness. XRD results revealed that the ITO and TiO2 films exhibited a crystalline phase with (400) and (101) preferred orientations at 2 θ = 26.24° and 35.18°, respectively. The photocurrent-voltage (I-V) characteristics of the DSSCs were measured under AM 1.5 and 100 mW/cm2 (1 sun) by using a solar simulator. The DSSC fabricated on the ITO film with a 0.1-nm-thick SiO2 film showed a Voc of 0.697 V, Jsc of 10.596 mA/cm2 , FF of 66.423, and calculated power conversion efficiency (ηAM1.5) of 5.259%, which was the maximum value observed in this study.

A Study on the Optical Characteristics of Multi-Layer Touch Panel Structure on Sapphire Glass (Sapphire Glass 기반 다층박막 터치패널구조의 광학특성 연구)

  • Kwak, Young Hoon;Moon, Seong Cheol;Lee, Ji Seon;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.168-174
    • /
    • 2016
  • A conductive oxide-based sapphire glass indium tin oxide/metal electrode and the optical coating, through patterning process was studied in excellent optical properties and integrated touch panel has a high strength. Indium tin oxide conductive oxides of the sapphire glass to 0.3 A at DC magnetron sputtering method of 10 min, gas flow Ar 10 Sccm Ar, $O_2$ 1.0 Sccm the formation conditions of the thin film after annealing at $550^{\circ}C$ for 30min was achieved through a 86% transmittance. In addition, the coating 130 nm hollow silica sol-gel was to improve the optical transmittance of the indium tin oxide to 91%. For the measurement by the modeling hollow silica sol by Macleod simulation and calculated the average values of silica part to the presence or absence in analogy to actual. Refractive index value and the actual value of the material on the simulation the transmittance difference is it does not completely match the air region similar to the actual value (transmission) could be confirmed that the measurement is set to a value of between 5 nm and 10 nm.

Design and performance study of fabry-perot filter based on DBR for a non-dispersive infrared carbon dioxide sensor (비분산적외선 CO2 센서를 위한 DBR기반의 패브리 페로-필터 설계 및 성능 연구)

  • Do, Nam Gon;Lee, Junyeop;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.250-254
    • /
    • 2021
  • A highly sensitive and selective non-dispersive infrared (NDIR) carbon dioxide gas sensor requires achieving high transmittance and narrow full width at half maximum (FWHM), which depends on the interface of the optical filter for precise measurement of carbon dioxide concentration. This paper presents the design, simulation, and fabrication of a Fabry-Perot filter based on a distributed Bragg reflector (DBR) for a low-cost NDIR carbon dioxide sensor. The Fabry-Perot filter consists of upper and lower DBR pairs, which comprise multilayered stacks of alternating high- and low-index thin films, and a cavity layer for the resonance of incident light. As the number of DBR pairs inside the reflector increases, the FWHM of the transmitted light becomes narrower, but the transmittance of light decreases substantially. Therefore, it is essential to analyze the relationship between the FWHM and transmittance according to the number of DBR pairs. The DBR is made of silicon and silicon dioxide by RF magnetron sputtering on a glass wafer. After the optimal conditions based on simulation results were realized, the DBR exhibited a light transmittance of 38.5% at 4.26 ㎛ and an FWHM of 158 nm. The improved results substantiate the advantages of the low-cost and minimized process compared to expensive commercial filters.

Effect of ZnO Buffer Layers on the Crystallization of ITO Thin Film at Low Temperature

  • Seong, Chung-Heon;Shin, Yong-Jun;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.208-211
    • /
    • 2012
  • In the present study, a ZnO thin film, as a buffer layer of ITO (indium tin oxide) film was deposited on glass substrates by RF magnetron sputtering at low temperature of $150^{\circ}C$. In order to estimate the optical characteristics and compare with the experimental results in Glass/ZnO(100 nm)/ITO(35 nm) multilayered film, the simulation program, EMP (Essential Macleod Program) was adopted. The sheet resistance and optical transmittance of the films were measured using the four-point probe method and spectrophotometer, respectively. From X-ray diffraction patterns, all the films deposited at $150^{\circ}C$ demonstrated only the amorphous phase. Optical transmittance was the highest at a ZnO thickness of 100 nm. The ITO(35 nm)/ZnO(100 nm) film exhibits an optical transmittance of >92% at 550 nm. The multilayered film showed an electrical sheet resistance of 407 ${\Omega}/sq.$, which is significantly better than that of a single-layer ITO film without a ZnO buffer layer (815 ${\Omega}/sq.$).

Light Scattering from Microscopic Structure and Its Role on Enhanced Haze Factor

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.340-340
    • /
    • 2016
  • We have prepared alumina (Al2O3) doped zinc oxide (AZO) films by DC magnetron sputtering (MS) technique and obtained higher self surface texturing at a high target angle (f). We have characterized the films and applied it as a front electrode of a single junction amorphous silicon solar cell. At a lower f the deposited films show higher values of optical gap (Eg), charge carriers mobility & concentration, crystallite grain size and wider wavelength range of transmission. At higher target angle the sheet resistance, surface roughness, haze factor etc for the films increase. For f=72.5o the haze factor for diffused transmission becomes 6.46% at 540 nm wavelength. At f=72.5o the material shows a reduction in crystallinity and evolution of a hemispherical-type sub-micron surface textures. A Monte Carlo method (MCM) of simulation of the AZO film deposition shows that such an enhanced self-surface texturing of the films at higher f is possible.

  • PDF