• Title/Summary/Keyword: Sputtering method

Search Result 1,357, Processing Time 0.027 seconds

Properites of transparent conductive ZnO:Al film prepared by co-sputtering

  • Ma, Hong-Chan;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.106-106
    • /
    • 2009
  • Al-doped ZnO (AZO) thin films were grown on glass substrates by co-sputtering at room temperature. We made ZnO and Al target and ZnO:Al film is deposited with sputter which has two RF gun source. The Al content was controlled by varying Al RF power and effect of Al contents on the properties of ZnO:Al film was investigated. Crystallinity and orientation of the ZnO:Al films were investigated by X-ray diffraction (XRD), surface morphology of the ZnO:Al films was observed by atomic force microscope. Electrical properties of the ZnO:Al films were measured at room temperature by van der Pauw method and hall measurement. Optrical properties of ZnO:Al films were measured by UV-vis-NIR spectrometer.

  • PDF

Preparation of Al Cathode for OLED by Sputtering Method (스퍼터링법을 이용한 OLED용 Al 음전극 제작)

  • Keum, Min-Jong;Kim, Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.729-733
    • /
    • 2005
  • Al electrode for OLED was deposited by FTS (Facing Targets Sputtering) system which can deposit thin films with low substrate damage. The Al thin films were deposited on the cell (LiF/EML/HTL/Bottom electrode) as a function of working gas such as Ar or Ar+kr mixed gas. Also Al thin films were prepared with working gas pressure (1, 6 mTorr). The film thickness and I-V curve of Al/cell were measured and evaluated. In the results, when Al thin films were deposited using pure Ar gas, the turn-on voltage of Al/cell was about 11 V. And using the Ar:Kr($75\%:25\%$) mixed gas, the turn-on voltage of Al/cell decreased to about 7 V.

Filling the Submicron Contact Holes with Al Alloys (AI 합금의 Contact Hole Filling 에 관한 연구)

  • 김용길
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.474-479
    • /
    • 1993
  • Submicron contact hole filling with aluminum alloys has been achieved with a multistep metallization method, which utilizes a metal " flow" or self-diffusion process at elevated temperatures after the metal was sputter-deposited. A multi-chamber, modular sputtering system was employed to deposit aluminum alloys and subsequently to anneal the deposited metal films under vacuum at high temperatures. The film were deposited on 200 mm wafers with planar, dc magnetron sputtering sources without anysubstrate bias. The basic process steps studied for the multistep metallization include an initial layer deposition at low temperatures less than $100^{\circ}C$, and an annealin gstep at elevated temperatures, between 450 and $550^{\circ}C$. The degree of planarization or step coverage was dependent strongly upon the temperature and time of the flow step and complete filling of the submicron contacts with aluminum alloys was achieved. Responsible mechanisms for the enhancement in step coverge and factros determining uniform and reproducible flow of aluminum alloys during the high temperauture step are discussed.discussed.

  • PDF

BIOCOMPATIBISITY OF ION BEAM PROCESSED FILMS DEPOSITED ON SURGICAL TI-6AI-4V

  • Lee, I-S;Song and I-j Yu
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.16-22
    • /
    • 1997
  • ion beam processing of materials for medical application has gained increasing interest in the last decade and the implantation of nitrogen into TI-6AI-4V to improve corrosive-wear performance is currently used for processing of total hip and knee joints. Oxides and nitrides of Ti, Zr, Al, Cr were deposited on TI-6AI-4V substrates by DC magnetron sputtering dual ion beam sputtering and ion beam assisted deposition. The cytotoxicity of these films were investigated by MTT method and showed comparable to untreated TI-6AI-4V Plasm-sprayed hydroxyapatite(HAp) coatings showed excellent cytotoxicity regardless of heat treatment. intermediate layer coatings of nitrides and oxides increased the bond strength of HAp to substrate by intrdducing chemical bond at interface. Heat treatment of HAp coatings also improved the chemical bond at interfaces and increased the bond strength of untreated TI-6AI-4V to 16.4 kg/$\textrm{cm}^2$ but still lower than 33.1 kg./$\textrm{cm}^2$ of ir oxide as a imtermediate layer caoting.

  • PDF

Fabrication of $WO_3$ thin film by sol-gel dip-coating method (Sol-gel dip-Coating법에 의한 $WO_3$ 박막 제조)

  • 김창열;김병섭;임태영;오근호
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.189-189
    • /
    • 2003
  • WO$_3$ 박막은 H$^{+}$이온이나 Li$^{+}$ 이온과 반응하여 H$_2$WO$_4$나 Li$_{x}$WO$_{3+x}$의 화합물을 이루고 파란색을 나타내는 효과를 보인다. 이러한 효과를 전기변색 (electrochromic) 효과라 한다. 이러한 전기변색효과를 이용하여 건축물의 창문을 통하여 들어오는 태양에너지와 빛의 양을 조절하는 윈도우를 제작하려는 국가적인 프로젝트가 미국, EU, 일본 등의 선진국에서 활발하게 진행되고 있다. WO$_3$ 박막을 제조하는 방법으로는 sputtering, CVD, 그리고 sol-gel coating 법 등이 있다. sputtering이나 CVD의 경우는 매우 균일하고 전기변색 특성이 좋은 박막을 제조할 수 있는 이점이 있지만 장치의 제조비가 비싸고 대형 패널을 제작하는 데에는 어려움이 있다. 솔-젤 코팅의 경우는 WO$_3$의 전구체인 솔을 합성하고 bath에 솔을 넣은 후 코팅하고자 하는 글라스 기판을 담갔다가 꺼내어 건조하고 열처리하는 간단한 방법으로 제조할 수 있는 장점이 있다. 솔-젤 코팅의 경우 제조비가 값싸고 대면적 코팅이 용이하다는 점이 다른 코팅 방법에 비하여 장점이라고 한 수 있다.다.다.

  • PDF

Physical and Electrical Properties of Nanocrystalline Carbon Films Prepared with Ti Concentration for Contact Strip Application of Electric Railway (전기철도 집전판 응용을 위한 Ti 나노금속 함량에 따른 나노결정 탄소박막의 물리적, 전기적 특성)

  • Park, Yong-Seob;Jung, Ho-Sung;Park, Chul-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1561-1564
    • /
    • 2012
  • In this work, we have fabricated the nanocrystalline carbon films by using unbalanced magnetron sputtering method with graphite and Ti targets for contact strip application of electrical railway. The power density of graphite target was fixed and the power density was increased for the increase of Ti concentration in TiC films. We investigated the hardness, surface roughness, contact angle, resistivity, HRTEM and XPS of TiC films with Ti concentration. The hardness and resistivity were improved with increasing Ti concentration. These results indicate that the improvement of hardness and resistivity is related to the increase of sp2 clusters in TiC films.

Epitaxial Growth of BSCCO Type Structure in Atomic Layer by Layer Deposition

  • Yang, Sung-Ho;Park, Yong-Pil;Jang, Kyung-Uk;Oh, Geum-Gon;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.97-100
    • /
    • 2000
  • Si$_2$Sr$_2$CuO$\sub$x/(Bi(2201)) thin films are fabricated by atomic layer by layer deposition using ion beam sputtering(IBS) method. During the deposition, 10 %-ozone/oxygen mixture gas of typical 5.0 ${\times}$ 10$\^$-5/ Torr is applied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then c-axis oriented Bi(2201) is grown.

  • PDF

Electrical Properties with Annealing Temperature of SBN Thin Film (SBN 박막의 열처리온도에 따른 전기적인 특성)

  • Kim, Jin-Sa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1083-1086
    • /
    • 2010
  • The $Sr_{0.7}Bi_{2.3}Nb_2O_9$ thin films were deposited on Si substrate using RF magnetron sputtering method. And the SBN thin films were annealed at 650~800$[^{\circ}C$]. The surface rougness showed about 0.42[nm] in annealed thin film at $650[^{\circ}C$]. The dielectric constant(150) of SBN thin film was obtained by annealing temperature above $700[^{\circ}C$]. The voltage dependence of dielectric loss showed a value within 0.02 in voltage ranges of -10~+10[V]. The dielectric constant characteristics showed a stable value with the increase of frequency. Also, the SBN thin films annealed at $750[^{\circ}C$] showed a fatigue-free characteristics up to $1.0\times10^8$ cycles.

Electrical Conduction Mechanism of AIN Insulator thin Film Fabricated by Reactive Sputtering Method for the Application of MIS Device (반응성 스퍼터링으로 제조한 MIS 소자용 AIN 절연박막의 전기전도 메커니즘)

  • Park, Jung-Cheul;Kwon, Jung-Youl;Lee, Heon-Yong;Chu, Soon-Nam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.751-755
    • /
    • 2007
  • We have studied the variable conditions of reactive sputtering to prepare AM thin film. The leakage current showed below $10^{-9}A/cm^2$ at the deposition temperature of $250^{\circ}C\;and\;300^{\circ}C$ in the field of 0.1 MV/cm, and it was gradually increased and to be saturated in 0.2 MV/cm. The C-V characteristics of the above mentioned deposition temperature conditions showed a deep depletion phenomenon at inversion region. The C-V characteristics showed similarly under the DC power conditions of 100 and 150 W but were degraded at 200W. When the DC power was 100, 200, and 300 W the dielectric breakdown phenomenon was shown in 2.8, 3.2 and 5.2 MV/cm, respectively. It was found that AIN film was dominated by Poole-Frenkel conduction mechanism.

Influence of Substrate Temperature of KLN Thin Film Deposited on Amorphoous Substrate (비정질 기판위에 증착한 KLN 박막의 기판온도에 의한 영향)

  • 박성근;최병진;홍영호;전병억;김진수;백민수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • The influences of substrate temperature were studied when fabricating KLN thin film on amorphous substrate using an rf-magnetron sputtering method. Investigating the vaporization temperature of the each element, the excess ratio of target and the optimum deposition conditions were effectively selected when thin filmizing a material which have elements with large difference fo vaporization temperature. In order to compensate K and Li which have lower vaporization temperatures than Nb, KLN target of composition excess with K of 60% and Li of 30% was used. KLN thin film fabricated on Corning 1737 glass substrate had single KLN phase above 58$0^{\circ}C$ of substrate temperature and crystallized to c-axis direction. The optimum conditions were rf power of 100W, process pressure of 150mTorr, and substrate temperature of $600^{\circ}C$.

  • PDF