• Title/Summary/Keyword: Sputtering method

Search Result 1,356, Processing Time 0.029 seconds

A Study on the Fabrication and Structural Properties of BaTiO$_3$ Thin Film by RF Sputtering (RF Sputtering법에 의한 BaTiO$_3$ 박막의 제조 및 구조적 특성에 관한 연구)

  • 이문기;류기원;배선기;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.193-197
    • /
    • 1996
  • BaTiO$_3$films in pure Ar atmosphere were prepared by RF sputtering method at low substrate temperature(100$^{\circ}C$). The structural and crystallographic properties were studied with deposition conditions and annealing methodes. Deposition rates and structural properties of BaTiO$_3$ thin filles were investigated by the SEM and X-ray diffraction. The chemical composition of BaTiO$_3$ thin films grown on Si(100) wafer was studied by tole EDS and EPHA. The optimised Ar pressure and RF power were 8[mtorr] and 180[W], respectively. The thickness of BaTiO$_3$ thin films deposited at optimised conditions was ∼3400[${\AA}$], and the dielectric constant of the thin films heat-treated at 750[$^{\circ}C$] for 1[hr] was 259.

  • PDF

Field Electron Emission from Amorphous Carbon Thin Film Grown Using Rf Magnetron Sputtering Method (RF 마그네트론 스퍼터링법으로 성장된 Amorphous carbon 각막의 전계전자방출)

  • ;;K. Oura
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.234-240
    • /
    • 2001
  • Using RF magnetron sputtering, amorphous carbon(a-C) thin films as electron filed emitter were fabricated. these a-C thin films were deposited on Si(001) substrate at several temperatures. The field electron emission property of these a-C thin films was estimated by a diode technique. As the result, we observed that the field emission properties of the films were changed singnificantly with the substrate temperature and structural features of a-C film. The field emission properties were promoted by higher substrate temperatures. Furthermore N-doped a-C film exhibits more field emission property than that of undoped a-C film. These results are explained as change of surface morphology and structural properties of a-C film.

  • PDF

Optimum deposition conditions of AlN thin film on the Si substrate for SAW application (SAW 소자 응용을 위한 실리콘 기판 위에 AlN 박막의 최적 증착 조건에 관한 연구)

  • Ko, Bong-Chul;Nam, Chang-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.301-306
    • /
    • 2007
  • AlN thin film for SAW filter application was deposited on (100) silicon wafers by reactive magnetron sputtering method. The structural characteristics were dependent on the deposition conditions such as sputtering pressure, RF power, substrate temperature, and nitrogen partial pressure. Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), Electron Probe MicroAnalyzer (EPMA) and Atomic Force Microscope (AFM) have been used to find out structural properties and preferred orientation of AlN thin films. Insertion loss of SAW devices was 28.51 dB and out of band rejection was about 24 dB.

Properties of ZnO:Ga thin films deposited by RF magnetron sputtering under various RF power

  • Kim, Deok Kyu;Kim, Hong Bae
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.242-244
    • /
    • 2015
  • ZnO:Ga thin films were deposited by RF magnetron sputtering technique from ZnO (3 wt.% $Ga_2O_3$) target onto glass substrates under various RF power. The influence of RF power on the structural, electrical, and optical properties of ZnO:Ga thin films was investigated by X-ray diffraction, atomic force microscopy, Hall method and optical transmission spectroscopy. As the RF power increases from 50 to 110W, the crystallinity is deteriorated, the root main square surface roughness is decreased and the sheet resistance is increased. The increase of sheet resistance is caused by decreasing carrier concentration due to interstitial Ga ion. All films are transparent up to 80% in the visible wavelength range and the adsorption edge is a red-shift with increasing RF power.

Structural and Optical Properties of CdS Thin Films Deposited by R.F. Magnetron Sputtering

  • Hwang, Dong-Hyeon;An, Jeong-Hun;Son, Yeong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.149-149
    • /
    • 2011
  • CdS films were deposited on glass substrates by R.F. magnetron sputtering method and the films were annealed at various substrate temperatures ranging from room temperature to $300^{\circ}C$. Structural properties of the films were studied by X-ray diffraction analysis. The structural parameters as crystallite size have been evaluated. The crystallite sizes were found to increase, and the X-ray diffraction patterns were seen to sharpen by increasing substrate temperatures. X-ray diffraction patterns of these films indicated that they contain both cubic (zincblende) and hexagonal (wurtzite) structures as a mixture. Optical properties of the films were measured at room temperature by using UV/VIS spectrometer in the wavelength range of 190 to 1100nm and optical absorption coefficients were calculated using these data. The energy gap of the films was found to decrease, and the band edge sharpness of the optical absorption was seen to oscillate by annealing. The results show that heat treatments under optimal annealing condition can provide significant improvements in the properties of CdS thin films.

  • PDF

The ZnS Film Deposition Technology for Cd-free Buffer Layer in CIGS Solar Cells

  • Lee, Jae-Hee;Hwang, Do-Weon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.218-218
    • /
    • 2011
  • The CIGS Solar Cells have the highest conversion efficiency in the film-type solar cells. They consist of p-type CuInSe2 film and n-type ZnO film. The CdS films are used as buffer layer in the CIGS solar cells since remarkable difference in the lattice constant and energy band gap of two films. The CdS films are toxic and make harmful circumstances. The CdS films deposition process need wet process. In this works, we design and make the hitter and lamp reflection part in the sputtering system for the ZnS films deposition as buffer layer, not using wet process. Film thickness, SEM, and AFM are measured for the uniformity valuation of the ZnS films. We conclude the optimum deposition temperature for the films uniformity less than 1.6%. The ZnS films deposited by the sputtering system are more dense and uniform than the CdS films deposited by the Chemical Bath Deposition Method(CBD) for the CIGS Solar Cells.

  • PDF

Surface morphology and electrical properties of ITO thin films fabricated by RF magnetron sputtering method (고주파 마그네트론 스퍼터링 방법으로 제작한 ITO 박막의 표면 형태 및 전기적 특성)

  • Kwon, Sung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.71-75
    • /
    • 2006
  • ITO (Indium Tin Oxide) thin films have been fabricated by rf magnetron sputtering with a target of a mixture $In_{2}O_{3]$(90 wt%) and $SnO_{2}$ (10 wt%). ITO films were sputtered with substrate temperature from 30 to $300^{\circ}C$ and working pressure from 1 to under 0.1 m Torr. ITO thin films surface morphology and electrical properties analyzed by SEM Photographs, and X-ray diffractions patterns. The resistivity of ITO thin films was $1.8{\times}10^{-5}{\Omega}/cm$.

Processing and Characterization of RF Magnetron Sputtered TiN Films on AISI 420 Stainless Steel (AISI 420 stainless steel 기판위에 D.C magnetron sputtering 법으로 제조한 TiN 박막의 특성 평가)

  • Song, Seung-Woo;Choe, Han-Cheol;Kim, Young-Man
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.5
    • /
    • pp.199-205
    • /
    • 2006
  • Titanium nitride (TiN) coatings were produced on AISI 420 stainless steel by DC magnetron sputtering of a Ti target changing the processing variables, such as the flow rate of $N_2/Ar$, substrate temperature and the existence of Ti interlayer between TiN coatings and substrates. The hardness and residual stress in the films were investigated using nanoindentation and a laser scanning device, respectively. The stoichiometry and surface morphology were investigated using X-Ray Diffraction and SEM. The corrosion property of the films was also studied using a polarization method in NaCl (0.9%) solution. Mechanical properties including hardness and residual stress were related to the ratio of $N_2/Ar$ flow rate. The corrosion resistance also was related to the processing variables.

A Study on Electrical Resistivity Variation of Zinc Oxide Thin Film (산화아연 박막의 전기저항률 변화에 관한 연구)

  • 정운조;박계춘
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.601-606
    • /
    • 1998
  • ZnO thin film had been deposited on the glass by sputtering method, and the electrical and structural properties were investigated. When the rf power was 180W and sputtering was 10 m Torr at room temperature, Al-doped ZnO thin film had the lowest resistivity(1$\times10^{-4}\Omega\cdot{cm}$) and then carrier concentration and Hall mobility were $6.27\times10^{20} cm^{-3} and 22.04 cm^2/V\cdot$s, respectively. The undoped ZnO thin film had about 10$\times10^{14}\Omega\cdot cm$ resistivity when oxygen content was 10% or more at room temperature. When the oxygen content was 50% and below and sputtering pressure was 1.0$\times$1.0 \ulcorner Torr, the surface morphology of thin film observed by SEM was overall uniform.

  • PDF

Thermal Stability of Ta-Mo Alloy Film on Silicon Dioxide (실리콘 산화막에 대한 Ta-Mo 합금 게이트의 열적 안정성)

  • 노영진;이충근;홍신남
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.361-366
    • /
    • 2004
  • The interface stability of Ta-Mo alloy film on SiO$_2$ was investigated. Ta-Mo alloy films were formed by co-sputtering method, and the alloy composition was varied by controlling Ta and Mo sputtering power, When the atomic composition of Ta was about 91%, the measured work function was 4.24 eV that is suitable for NMOS gate. To identify interface stability between Ta-Mo alloy film and SiO$_2$, C-V and XRD measurements were performed on the samples annealed with rapid thermal processor between $600^{\circ}C$ and 90$0^{\circ}C$. Even after 90$0^{\circ}C$ rapid thermal annealing, excellent interface stability and electrical properties were observed. Also, thermodynamic analysis was studied to compare with experimental results.