• 제목/요약/키워드: Sputtered film

검색결과 413건 처리시간 0.022초

Low-Temperature Poly-Si TFT Charge Trap Flash Memory with Sputtered ONO and Schottky Junctions

  • An, Ho-Myoung;Kim, Jooyeon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권4호
    • /
    • pp.187-189
    • /
    • 2015
  • A charge-trap flash (CTF) thin film transistor (TFT) memory is proposed at a low-temperature process (≤ 450℃). The memory cell consists of a sputtered oxide-nitride-oxide (ONO) gate dielectric and Schottky barrier (SB) source/drain (S/D) junctions using nickel silicide. These components enable the ultra-low-temperature process to be successfully achieved with the ONO gate stacks that have a substrate temperature of room temperature and S/D junctions that have an annealing temperature of 200℃. The silicidation process was optimized by measuring the electrical characteristics of the Ni-silicided Schottky diodes. As a result, the Ion/Ioff current ratio is about 1.4×105 and the subthreshold swing and field effect mobility are 0.42 V/dec and 14 cm2/V·s at a drain voltage of −1 V, respectively.

상온에서 RF 스퍼터링 방법으로 증착한 Hafnium Oxide 박막의 저항 변화 특성 (Resistive Switching Characteristics of Hafnium Oxide Thin Films Sputtered at Room Temperature)

  • 한용;조경아;윤정권;김상식
    • 한국전기전자재료학회논문지
    • /
    • 제24권9호
    • /
    • pp.710-712
    • /
    • 2011
  • In this study, we fabricate resistive switching random access memory (ReRAM) devices constructed with a Al/$HfO_2$/ITO structure on glass substrates and investigate their memory characteristics. The hafnium oxide thin film used as a resistive switching layer is sputtered at room temperature in a sputtering system with a cooling unit. The Al/$HfO_2$/ITO device exhibits bipolar resistive switching characteristics, and the ratio of the high resistance (HRS) to low resistance states (LRS) is more than 60. In addition, the resistance ratio maintains even after $10^4$ seconds.

Cu2In3, CuGa, Cu2Se를 이용한 전구체박막을 셀렌화하여 제조한 Cu(In,Ga)Se2 박막의 미세구조 및 농도분포 변화 (Microstructure and Compositional Distribution of Selenized Cu(In,Ga)Se2 Thin Film Utilizing Cu2In3, CuGa and Cu2Se)

  • 이종철;정광선;안병태
    • 한국재료학회지
    • /
    • 제21권10호
    • /
    • pp.550-555
    • /
    • 2011
  • A high-quality CIGS film with a selenization process needs to be developed for low-cost and large-scale production. In this study, we used $Cu_2In_3$, CuGa and $Cu_2Se$ sputter targets for the deposition of a precursor. The precursor deposited by sputtering was selenized in Se vapor. The precursor layer deposited by the co-sputtering of $Cu_2In_3$, CuGa and $Cu_2Se$ showed a uniform distribution of Cu, In, Ga, and Se throughout the layer with Cu, In, CuIn, CuGa and $Cu_2Se$ phases. After selenization at $550^{\circ}C$ for 30 min, the CIGS film showed a double-layer microstructure with a large-grained top layer and a small-grained bottom layer. In the AES depth profile, In was found to have accumulated near the surface while Cu had accumulated in the middle of the CIGS film. By adding a Cu-In-Ga interlayer between the co-sputtered precursor layer and the Mo film and adding a thin $Cu_2Se$ layer onto the co-sputtered precursor layer, large CIGS grains throughout the film were produced. However, the Cu accumulated in the middle of CIGS film in this case as well. By supplying In, Ga and Se to the CIGS film, a uniform distribution of Cu, In, Ga and Se was achieved in the middle of the CIGS film.

Tribological Properties of Co-Sputtered $MoS_2$ Films

  • Sagara, K.;Yamazaki, T.;Nishimura, M.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.145-146
    • /
    • 2002
  • Tribological properties of co-sputtered Molybdenum disulfide $(MoS_2)/Carbon\;(C)$ films were studied and compared with those of sputtered $MoS_2$ films. Friction tests were carried out using pin-on-disk friction testers to evluated their friction and wear behaviors in a vacuum ($10^{-5}Pa$), air and humid air of 30, 50, 80% RH. $MoS_2/C$ (14%) composite films exhibited about 9 times longer wear life in a vacuum and about 6 times longer wear life in dry air than $MoS_2$ films did. They also showed stable low friction coefficient of about 0.02 in a vacuum. In humid air, however, $MoS_2/C$ composite films hardly showed good tribological properties.

  • PDF

유기금속 화학증착법에 의해 Sputtered-Ru/Polysilicon 위에 증착된 Pt 전극의 특성 (Characterization of Pt Bottom Electrode Deposited on Sputtered-Ru/polysilicon by Metalorganic Chemical Vapor Deposition)

  • 최은석;양정환;윤순길
    • 한국재료학회지
    • /
    • 제9권4호
    • /
    • pp.368-372
    • /
    • 1999
  • The suggested electrode structure of MOCVD-Pt/sputtered-Ru/polysilicon has an excellent adhesion with increasing annealing temperatures and shows a stable electrode structure up to $600^{\circ}C$. However, the ruthenium used for barrier layer increased the roughness of platinum bottom electrodes because ruthenium diffused through the Pt bottom electrode and reacted with oxygen during the annealing above $700^{\circ}C$. The surface roughness increased the resistivity of Pt bottom electrodes. The resistivity of samples annealed at $600^{\circ}C$ was about $13\mu$Ω.cm. The electrode structure was possible to apply for ferroelectric thin film integration of semiconductor memory devices.

  • PDF

스퍼터 ITO박막의 제조 공정 이해 및 활용 (Application and Processes for Sputtered ITO Films)

  • 송풍근
    • 한국표면공학회지
    • /
    • 제50권2호
    • /
    • pp.55-71
    • /
    • 2017
  • Transparent Conductive Oxide (TCO), especially Indium Tin Oxide (ITO) films are almost prepared by DC magnetron sputtering because of the advantage of obtaining homogeneous large area coatings with high reproducibility. The purpose of this report is describe a detailed investigation of key factors dominating electrical and structural properties of sputtered ITO films. It was confirmed that crystallinity and electrical properties of ITO films were strongly depend on the sputtering pressure and kinetic energy of sputtered particles which are expected to have a close relation with the transport processes between target and substrate. And also, nodule formation on the ITO target was suppressed by both $CaCO_3$ addition and decreasing micro-pore in the target. On the other hand, we focused on the characteristics of amorphous TCO film to use as transparent electrode for various applications. To realize high thermoelectric performance, it was tried to control both high electrical conductivity and low thermal conductivity for the amorphous IZO:Sn films.