DOI QR코드

DOI QR Code

Resistive Switching Characteristics of Hafnium Oxide Thin Films Sputtered at Room Temperature

상온에서 RF 스퍼터링 방법으로 증착한 Hafnium Oxide 박막의 저항 변화 특성

  • Han, Yong (Department of Nano Semiconductor Engineering, Korea University) ;
  • Cho, Kyoung-Ah (Department of Electrical Engineering, Korea University, Korea University) ;
  • Yun, Jung-Gwon (Department of Electrical Engineering, Korea University, Korea University) ;
  • Kim, Sang-Sig (Department of Nano Semiconductor Engineering, Korea University)
  • 한용 (고려대학교 나노반도체공학과) ;
  • 조경아 (고려대학교 전기전자전파공학과) ;
  • 윤정권 (고려대학교 전기전자전파공학과) ;
  • 김상식 (고려대학교 나노반도체공학과)
  • Received : 2011.07.29
  • Accepted : 2011.08.24
  • Published : 2011.09.01

Abstract

In this study, we fabricate resistive switching random access memory (ReRAM) devices constructed with a Al/$HfO_2$/ITO structure on glass substrates and investigate their memory characteristics. The hafnium oxide thin film used as a resistive switching layer is sputtered at room temperature in a sputtering system with a cooling unit. The Al/$HfO_2$/ITO device exhibits bipolar resistive switching characteristics, and the ratio of the high resistance (HRS) to low resistance states (LRS) is more than 60. In addition, the resistance ratio maintains even after $10^4$ seconds.

Keywords

References

  1. J. W. Yun, K. A. Cho, B. J. Park, B. H. Park, and S. S. Kim, J. Mater. Chem., 19, 2082 (2009). https://doi.org/10.1039/b817062b
  2. E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L Pereira, and I. Ferreira, Appl. Phys., A96, 197 (2009).
  3. S. H. Lee, H. J. Kim, D. J. Yun, S. W. Rhee, and K. J. Yong, Appl. Phys. Lett., 95, 262113 (2009). https://doi.org/10.1063/1.3280864
  4. L. M. Kukreja, A. K. Das, and P. Misra, Bull. Mater. Sci., 32, 247 (2009). https://doi.org/10.1007/s12034-009-0037-5
  5. K. Nagashima, T. Yanagida, K. Oka, and T. Kawai, Appl. Phys. Lett., 94, 242902 (2009). https://doi.org/10.1063/1.3156863
  6. P. Misra, A. K. Das, and L. M. Kukreja, Phys. Status Solidi., C7, 1718 (2010).
  7. J. W. Seo, J. W. Park, K. S. Lim, J. H. Yang, and S. J. Kang, Appl. Phys. Lett., 93, 223505 (2008). https://doi.org/10.1063/1.3041643
  8. M. Y. Chan, T. Zhang, V. Ho, and P. S. Lee, Microelectron. Eng., 85, 2420 (2008). https://doi.org/10.1016/j.mee.2008.09.021
  9. C. Walczyk, C. Wenger, R. Sohal, M. Lukosius, A. Fox, J. Dabrowski, D. Wolansky, B. Tillack, H. J. Mussig, and T. Schroeder J. Appl. Phys., 105, 114103 (2009). https://doi.org/10.1063/1.3139282
  10. S. H Lee, W. G. Kim, S. W. Rhee, and K. J. Yong, J. Electrochem. Soc., 155, 92 (2008).
  11. P . Gonon, M . M ougenot, C . V allée, C . Jorel, V . Jousseaume, H. Grampeix, and F. E. Kamel, J. Appl. Phys., 107, 074507 (2010). https://doi.org/10.1063/1.3357283
  12. Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang, and M. Liu, Nanotechnology, 21, 045202 (2010). https://doi.org/10.1088/0957-4484/21/4/045202
  13. K. R. Kim, I. S. Park, J. P. Hong, S. S. LEE, B. L. Choi, and J. H. Ahn, J. Korean Phys. Soc., 49, 548 (2006).
  14. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater., 21, 2632 (2009). https://doi.org/10.1002/adma.200900375